
   

 

SFA Modernization Partner 

United States Department of Education 

Student Financial Assistance 

 

ITA Reusable Common Services 
 

Build & Test Report  

Task Order #46 

Deliverable # 46.1.4 

 

 

Version 1.0 
 

 

September 27, 2001



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 3

Table of Contents 

1 INTRODUCTION.............................................................................................................................................6 
1.1 PURPOSE .....................................................................................................................................................6 
1.2 APPROACH ..................................................................................................................................................6 

1.2.1 Testing....................................................................................................................................................6 
1.2.2 Performance Analysis ............................................................................................................................7 
1.2.3 Configuration Management ...................................................................................................................7 
1.2.4 ClearCase and Reusable Common Services ..........................................................................................8 
1.2.5 Build Management...............................................................................................................................10 
1.2.6 RCS Source Code File Listing .............................................................................................................11 

2 RCS  – COMPONENT FACTORY FRAMEWORK ..................................................................................12 
2.1 TESTING CONDITIONS & RESULTS.............................................................................................................13 

2.1.1 Automated Testing ...............................................................................................................................13 
2.2 PERFORMANCE ANALYSIS .........................................................................................................................14 

2.2.1 Summary ..............................................................................................................................................14 
2.2.2 Test Environment .................................................................................................................................14 
2.2.3 Test Configuration ...............................................................................................................................14 
2.2.4 Testing Scenarios.................................................................................................................................14 
2.2.5 Analysis................................................................................................................................................16 

2.3 USER GUIDE..............................................................................................................................................28 
2.3.1 Introduction .........................................................................................................................................28 
2.3.2 Background..........................................................................................................................................28 
2.3.3 Description...........................................................................................................................................29 
2.3.4 Installation ...........................................................................................................................................29 
2.3.5 Configuration.......................................................................................................................................30 
2.3.6 Usage Scenarios ..................................................................................................................................31 
2.3.7 Sample Code ........................................................................................................................................32 
2.3.8 Resources .............................................................................................................................................33 

3 RCS  – EMAIL FRAMEWORK ...................................................................................................................34 
3.1 TESTING CONDITIONS & RESULTS.............................................................................................................34 

3.1.1 Automated Testing ...............................................................................................................................34 
3.2 PERFORMANCE ANALYSIS .........................................................................................................................35 

3.2.1 Summary ..............................................................................................................................................35 
3.2.2 Test Environment .................................................................................................................................35 
3.2.3 Test Configuration ...............................................................................................................................36 
3.2.4 Test Scenario........................................................................................................................................36 
3.2.5 Analysis................................................................................................................................................37 
3.2.6 General Performance Metrics..............................................................................................................45 

3.3 USER GUIDE..............................................................................................................................................45 
3.3.1 Introduction .........................................................................................................................................45 
3.3.2 Description...........................................................................................................................................46 
3.3.3 Installation ...........................................................................................................................................47 
3.3.4 Configuration.......................................................................................................................................48 
3.3.5 Usage Scenarios ..................................................................................................................................48 
3.3.6 Sample Code ........................................................................................................................................50 
3.3.7 Resources .............................................................................................................................................51 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 4

4 RCS – EXCEPTION HANDLING FRAMEWORK....................................................................................52 
4.1 TESTING CONDITIONS & RESULTS.............................................................................................................52 

4.1.1 Automated Testing ...............................................................................................................................52 
4.2 PERFORMANCE ANALYSIS .........................................................................................................................54 

4.2.1 Summary ..............................................................................................................................................54 
4.2.2 Test Environment .................................................................................................................................54 
4.2.3 Test Configuration ...............................................................................................................................55 
4.2.4 Test Scenario........................................................................................................................................56 
4.2.5 Analysis................................................................................................................................................56 
4.2.6 General Performance Metrics..............................................................................................................70 
4.2.7 Conclusion ...........................................................................................................................................70 

4.3 USER GUIDE..............................................................................................................................................71 
4.3.1 Introduction .........................................................................................................................................71 
4.3.2 Description...........................................................................................................................................71 
4.3.3 Installation ...........................................................................................................................................72 
4.3.4 Configuration.......................................................................................................................................73 
4.3.5 Usage Scenarios ..................................................................................................................................74 
4.3.6 Last Resort Handlers ...........................................................................................................................76 
4.3.7 Resources .............................................................................................................................................77 

5 RCS  – LOGGING FRAMEWORK..............................................................................................................79 
5.1 TESTING CONDITIONS & RESULTS.............................................................................................................79 

5.1.1 Automated Testing ...............................................................................................................................79 
5.2 PERFORMANCE ANALYSIS .........................................................................................................................82 

5.2.1 Summary ..............................................................................................................................................82 
5.2.2 Background..........................................................................................................................................83 
5.2.3 Test Environment .................................................................................................................................83 
5.2.4 Test Configuration ...............................................................................................................................84 
5.2.5 Test Scenarios ......................................................................................................................................85 
5.2.6 Analysis................................................................................................................................................86 
5.2.7 General Performance Metrics..............................................................................................................96 

5.3 USER GUIDE..............................................................................................................................................96 
5.3.1 Introduction .........................................................................................................................................96 
5.3.2 Description...........................................................................................................................................97 
5.3.3 Installation ...........................................................................................................................................98 
5.3.4 Configuration.......................................................................................................................................98 
5.3.5 Usage Scenarios ................................................................................................................................101 
5.3.6 Sample Code ......................................................................................................................................102 
5.3.7 Resources ...........................................................................................................................................104 

6 RCS – PERSISTENCE FRAMEWORK.....................................................................................................105 
6.1 TESTING CONDITIONS & RESULTS...........................................................................................................105 

6.1.1 Automated Testing .............................................................................................................................105 
6.2 PERFORMANCE ANALYSIS .......................................................................................................................110 

6.2.1 Summary ............................................................................................................................................110 
6.2.2 Background........................................................................................................................................111 
6.2.3 Testing Environment ..........................................................................................................................111 
6.2.4 Testing Configuration ........................................................................................................................111 
6.2.5 Testing Scenarios...............................................................................................................................114 
6.2.6 Analysis..............................................................................................................................................115 
6.2.7 General Performance Metrics............................................................................................................126 

6.3 USER GUIDE............................................................................................................................................126 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 5

6.3.1 Introduction .......................................................................................................................................126 
6.3.2 Background........................................................................................................................................127 
6.3.3 Description.........................................................................................................................................127 
6.3.4 Installation .........................................................................................................................................130 
6.3.5 Configuration.....................................................................................................................................131 
6.3.6 Usage Scenarios and Sample Code ...................................................................................................134 
6.3.7 Resources ...........................................................................................................................................143 

7 RCS  – SEARCH FRAMEWORK ..............................................................................................................144 
7.1 TESTING CONDITIONS & RESULTS...........................................................................................................144 

7.1.1 Automated Testing .............................................................................................................................144 
7.2 PERFORMANCE ANALYSIS .......................................................................................................................149 

7.2.1 Summary ............................................................................................................................................149 
7.2.2 Test Environment ...............................................................................................................................149 
7.2.3 Test Configuration .............................................................................................................................149 
7.2.4 Test Scenarios ....................................................................................................................................150 
7.2.5 Analysis..............................................................................................................................................152 

7.3 USER GUIDE............................................................................................................................................164 
7.3.1 Introduction .......................................................................................................................................164 
7.3.2 Description.........................................................................................................................................165 
7.3.3 Installation .........................................................................................................................................167 
7.3.4 Configuration.....................................................................................................................................168 
7.3.5 Usage Scenarios with Sample Code...................................................................................................169 
7.3.6 Resources ...........................................................................................................................................174 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 6

 

1 Introduction 

1.1 Purpose 
This Build and Test Report documents the build procedures, test conditions, and results of the ITA 
Release 2.0 Reusable Common Services (RCS).  Specifically, this report provides: 

• RCS test conditions and results 
• RCS performance analysis 
• RCS usage scenarios 
• RCS repository and build approach 
 

ITA Release 2.0 RCS includes:  

• Component Factory Framework 
• Email Framework 
• Exception Handling Framework 
• Logging Framework 
• Persistence Framework 
• Search Framework. 
 

1.2 Approach 

1.2.1 Testing  
To ensure the quality of RCS, each service went through extensive unit testing.  ITA relied on two 
methods in conducting unit tests: automated and manual unit test.  Wherever applicable, ITA utilized 
JUnit for automated testing.    JUnit is a set of Java packages that allows developers to readily create Java 
test cases for Java classes, and to then run these unit tests interactively or in batch mode.   The intended 
result is higher quality code, as well as avoidance of the cumbersome and repetitive task of going back 
and reconstructing unit tests after all code has been written.  

For special cases where automated unit tests could not be performed by JUnit, ITA developers conducted 
manual tests.  Test conditions for automated and manual testing are provided in this document and 
expected results are also provided for manual testing. 

Benefits to the unit test approach are: 

• Standardized test conditions and cycles 
• Increased code quality 
• Increased consistency in the approach to testing 
• Increased productivity  
• Reduced time for regression testing 
• More time available to spend on enhancements as less time is required for fixes 
 
Test conditions are documented in a tabular format with the following column headings: 
 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 7

Column Description 
Condition Number Test condition number 
Detailed Condition Detailed description of the test condition/case 
Test Class Name Test class name in JUnit Java code 
Test Class Method Test method (test case) in the test class 
Class Name Specific Java source file of the RCS code to be tested by the JUnit test 

code 
Method Name Specific method in the Java source file of the RCS code to be tested by 

the JUnit test code 
Results Expected results 
Data File Name Any configuration and/or data files needed to execute this test case 

 

1.2.2 Performance Analysis 
To ensure program efficiency and to detect possible bottlenecks, ITA used JProbe to analyze each RCS 
component to identify common performance issues such as thread integrity and memory management.   

Common thread integrity issues include: 
• Data Race Conditions – Occurs when concurrent threads attempt to access a shared resource at 

the same time.   One thread can be writing to a shared resource at the same time another thread 
attempts to readfrom or write to the same shared resource.  This will result in unreliable data. 

• Deadlocks – Occurs when one thread is holding a lock while attempting to acquire a lock held by 
another thread, while at the same time, the second thread needs the lock held by the first.   
Incorrect programming logic will cause the threads to never move forward and cause the 
program to terminate. 

Common memory management issues include: 
• Loitering objects – Occurs when the application will not use the objects again, but the developers 

fail to remove the reference to the objects, the objects will remain, or loiter, in memory 
indefinitely.  This condition can consume a significant amount of memory and degrade the Java 
Virtual Machine (JVM) performance. 

• Excessive object allocation – If the application creates an excessive number of objects, the Java 
heap (a type of memory) will grow larger and garbage collection activities will take longer 
because there are more objects to evaluate.  This will also degrade the JVM performance. 

 
The performance analysis for each service is documented in this report.  The topics included in the 
performance analysis are: 

• Background information 
• Test harness design 

o Test environment 
o Test configuration 
o Test scenario 

• Memory (Heap) analysis  
• Performance analysis  
• General Performance Metrics 

 

1.2.3 Configuration Management 
ITA uses Rational ClearCase for its configuration management system.  ClearCase manages multiple 
variants of evolving software systems, tracks which versions were used in software builds, performs 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 8

builds of individual programs or entire releases according to user-defined version specifications, and 
enforces site-specific development policies. 

These capabilities enable ClearCase to address the critical requirements of organizations that produce and 
release software: 

• Effective Development: ClearCase enables developers to work efficiently, allowing them 
to fine-tune the balance between sharing each other's work and isolating themselves from 
destabilizing changes. ClearCase automatically manages the sharing of both source files 
and the files produced by a software build. 

• Effective Management: ClearCase tracks the software build process, so that developers 
can determine what was built, and how it was built. Further, ClearCase can instantly 
recreate the source base from which a software system was built, allowing it to be rebuilt, 
debugged, and updated all without interfering with other programming work. 

• Enforcement Of Development Policies: ClearCase enables project administrators to 
define development policies and procedures, and to automate their enforcement. 

1.2.4 ClearCase and Reusable Common Services 
ClearCase is a robust version control system that can manage large projects with highly interdependent 
code.  There are two main capabilities that RCS will utilize within ClearCase: 

• Version Control: Developers use ClearCase on a daily basis to maintain a complete 
history of their project files.  This will aid developers, project managers, and build 
managers maintain a complete picture of the progression of a resource. 

• Common Directory Structure: A common directory structure will be implemented and 
utilized for each common service.  This standard will simplify the process of releasing 
major and minor versions.   

The RCS directory structure in ClearCase is as follows: 

Directory Function Use 
/resources To maintain any configuration files that 

are utilized by the common services. 
Developers should use this folder for any 
files that contain configuration information 
that is necessary for a common service to 
function at runtime. 

/classes To hold the compiled class files for the 
contents of the /src directory. 

 

When ANT completes a build, this directory 
will be populated with the compiled source 
code.  This directory should not be archived 
and versioned within ClearCase, for two 
reasons:  1) This will dramatically increase 
the size of the repository; 2) The class files 
are always available for use by compiling 
them from the source files. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 9

Directory Function Use 
/dist To maintain a record of previous 

distribution .exe files. 

 

When a major or minor release is 
completed, the corresponding distribution 
packages will be copied into this directory 
and added to version control.  The same 
label that is applied to all files that make up 
a build will also be added to the .exe files.   

/doc 
/internal/ 
/external/ 

To maintain any (non-javadoc) 
documentation both internal and external. 

 

Documentation will be created during the 
design, development, and testing phases of 
the project.  Testing conditions and other 
internal documentation will be placed 
within the internal folder, while user guides 
and design documentation will reside in the 
external folder. 

/examples Example programs that show how to 
properly use the common services and 
give the end user a code reference for 
their use. 

Developers and testers will use this 
directory to store and version different 
example programs and scripts.  There will 
be a directory for each common service in 
/examples and it is within these folders that 
the code will reside. 

/javadoc To provide an area for compiled javadocs 
to reside within the view and the 
distribution. 

When developers and build managers make 
the distributions for RCS, this directory will 
be the output destination for the javadoc.  
There will be a directory for each common 
service within /javadoc.  There will be no 
version control applied to these files, as they 
are derived from comments within the 
source code.  This source code is already 
versioned within ClearCase, and there is no 
use in duplicating these files. 

/lib To place all third-party libraries that are 
necessary for a common service. 

 

If developers need to use libraries that are 
not a part of the java standard library, they 
should place them in the /lib folder for their 
use.  As there will be no change to these 
libraries, there is no need to include them in 
the ClearCase repository. 

/src 
/gov/ed/sfa/i
ta/ 

To place source code and maintain the 
package structure for common services. 

 

This is the main development area and it 
holds the bulk of the source code necessary 
for the common services.  These folders 
adhere to the RCS package structure and 
are included when builds and distributions 
are made. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 10

Directory Function Use 
/test To store automated unit test code for 

development and performance testing. 

 

Within a common service folder is the 
versioned source code for testing each RCS 
component.  These programs will be 
provided with the source code and full 
distribution for testing. 

/build To maintain and version the build files, 
batch files, and scripts that are necessary 
to build individual RCS components as 
well as the full complement. 

This folder will contain the versioned files 
necessary to build each component and will 
be used almost solely by the build manager. 

 

1.2.5 Build Management 
ANT is a Java-based build tool used for RCS Build Management.   ANT is an open-source project from the 
Jakarta Project.  It is a powerful scripting tool that lets developers execute the build processes around the 
code requirements using predefined tasks.  A defined build process ensures that the software in the 
development project is built in the exact same manner each time a build is executed.  As the build process 
becomes more complex it becomes increasingly necessary to achieve such consistency.  ANT is a 
platform-independent scripting tool that lets developers construct build scripts using a large number of 
built-in tasks with minimal customization.  

The table below lists some of the major tasks that are built into the Ant distribution. 
 

Command Description 

Ant Used to execute another ant process from within the 
current one. 

Copy Used to copy directories and files 
Copyfile Used to copy a single file. 
Cvs Handles packages/modules retrieved from a CVS 

repository. 
Delete Deletes either a single file or all files in a specified 

directory and its sub-directories. 
Deltree Deletes a directory with all its files and subdirectories. 
Exec Executes a system command. When the os attribute is 

specified, then the command is only executed when Ant 
is run on one of the specified operating systems. 

Get Gets a file from an URL. 
Jar Jars a set of files. 
Java Executes a Java class within the running (Ant) VM or 

forks another VM if specified. 
Javac Compiles a source tree within the running (Ant) VM. 
Javadoc Generates code documentation using the javadoc tool. 
Junit Part of the Ant optional Tasks.  Runs JUnit tests. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 11

Command Description 

Mkdir Makes a directory. 
Property Sets a property (by name and value), or set of properties 

(from file or resource) in the project. 
Rmic Runs the rmic compiler for a certain class. 
Tstamp Sets the DSTAMP, TSTAMP, and TODAY properties in 

the current project. 
Style Processes a set of documents via XSLT. 
Zip Zips a set of files 

 
The ANT tool builds the following distribution packages for each RCS framework: 
 
Package Description 
Distribution 
Package 

- Package naming format: EX. RCS.<Service>.<Major #>.<Minor #>.package.exe 
- Contents: Executables, Source, Documentation, Release Notes 
 

Executable - Package naming format: EX. RCS.<Service>.<Major #>.<Minor #>.exe 
The Executable package will be the distribution for any project that would just like the 
deliverable components, with the necessary libraries and class files present.  The self-
extracting WinZip file will only need to be extracted into the class path of the application 
for the RCS components to be utilized.   

Source - Package naming format: EX. RCS.<Service>.<Major #>.<Minor #>.src.exe 
This is the package of all of the source files.   

Documentation - Package naming format: EX. RCS.<Service>.<Major #>.<Minor #>.doc.exe 
 The documentation package will contain the design documents, user guides, examples, 
configuration files, test documentation and the JavaDoc associated with a particular common 
service. 

Release Notes - Package naming format: EX. readme.<Service>.<Major #>.<Minor #>.txt 
The release notes will be used to provide the end user of RCS components with an overview of 
the capabilities and any installation and build instructions in order to utilize the components.   
 

 
 

1.2.6 RCS Source Code File Listing 
The table below shows the list of Java source files for each of the RCS frameworks. 

RCS Source File 
Component Factory SFAFactory.java 

SFALocalProducer.java 
SFAObject.java 
SFAProducer.java 
SFASerializableObject.java 

Email SFASmtpClient.java 
Exception SFAException.java 

SFAExceptionFactory.java 
Logging Syslog.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 12

RCS Source File 
Persistence ISFAPersistableMapper.java 

SFADomain.java 
SFAOracleParser.java 
SFAParameter.java 
SFAParser.java 
SFAPersistableObjectmanager.java 
SFAPersisConstants.java 
SFAQueryParser.java 
SFAResultSet.java 
SFAUnitofWork.java 

Search AutonomyConnection.java 
AutonomyResultSet.java 
AutonomyStatement.java 

 

2 RCS  – Component Factory Framework 
The Component Factory, also known as the Object Factory, is a producer of objects.  The ITA custom 
Component Factory incorporates the following:  

• Support of applications running on the IBM WebSphere Application Server (WAS) 
• Limit of the framework only to local classes since SFA applications are not implementing EJBs in 

their applications 
• Integration with the ITA exception handling framework 
• Integration with the ITA logging framework 

 
The component factory encapsulates object creation logic by providing an instance of an object and not 
revealing its implementation.  Implementing the component factory will provide application teams with 
the following benefits: 
 
Rapid development and code reuse 
If an environment needs to be configured before creating an instance of an object, then using the 
component factory will ease the object creation by allowing a developer to call the produce method of the 
factory and not to worry about setting up an environment.  A properties file that is used to create the 
object will configure the environment.  This will help promote rapid software development and code 
reuse. 

Complex object creation 
If object creation is complex (i.e., a class uses its subclasses to specify which objects it creates) then using 
the component factory can ease the development effort. 

Migrating to different environments 
If the production and development environments are not a mirror image of each other, then the developer 
can encapsulate all the configuration information in the SFAFactory class and just create an instance of an 
object.  As a result, the component factory enables the definition of clear migration strategies from one 
architectural approach to another. 

Technology change 
The technology underlying the creation of an object can change.  Future releases of RCS will extend the 
component factory to support EJBs and JDBC 2.0 DataSources.  After the component factory is extended it 
can be used to create lite-EJBs that are collocated with servlets and JSPs.  Later these lite-EJBs can be 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 13

converted into complete EJBs and deployed onto an application server without changing any of the 
previously defined servlets and JSPs. 

Arbitrary data types 
The component factory can be used with arbitrary data types.  The component factory is organized in 
such a way that it can instantiate other classes without being dependent on any of the classes it 
instantiates. 

Adding new classes 
The component factory can easily add new subclasses without impacting the existing classes.  Thus, as the 
application gets more complex (e.g., the application uses EJBs) then the developer can easily extend the 
component factory by additional classes that create different types of objects.  

 

2.1 Testing Conditions & Results 

2.1.1 Automated Testing 
Normal Conditions 

Condition 
Number 

Detailed 
Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name 

1 Load the ita 
properties file TestComponentFactory testloadProperties SFAFactory loadFile Properties file 

loaded 

rcs.xml, ita.properties, 
errormessage_US.prop

erties 

2 Set the 
environment TestComponentFactory testSetEnvironment SFAFactory setEnvironment Environment 

is set 

rcs.xml, ita.properties, 
errormessage_US.prop

erties 

3 

Create an 
instance of the 
using default 

producer 

TestComponentFactory testProduce SFAFactory produce 
A default 
object is 
created 

rcs.xml, ita.properties, 
errormessage_US.prop

erties 

4 

Create an 
instance of an 
object using 

local producer 

TestComponentFactory testProduce SFAFactory produce 
Requested 

object is 
produced 

rcs.xml, ita.properties, 
errormessage_US.prop

erties 

 

Exception Conditions 

Condition 
Number 

Detailed 
Condition 

Test Class 
Name 

Test Class Method Class 
Name 

Method 
Name 

Results Data File Name 

1 Cannot load the ita 
properties file 

TestComponent
Factory 

testLoadProperties SFAFactor
y 

loadFile Exception 
is caught 

rcs.xml, ita.properties, 
errormessage_US.pro

perties 
2 Cannot set the 

environment 
TestComponent

Factory 
testSetEnvironment SFAFactor

y 
setEnvironme

nt 
Exception 
is caught 

rcs.xml, ita.properties, 
errormessage_US.pro

perties 
3 The requested 

object is not 
produced 

TestComponent
Factory 

testProduceDefault SFAFactor
y 

produce Exception 
is caught 

rcs.xml, 
ita.properties.fails, 

errormessage_US.pro
perties 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 14

Condition 
Number 

Detailed 
Condition 

Test Class 
Name 

Test Class Method Class 
Name 

Method 
Name 

Results Data File Name 

4 The requested 
object is not 

produced 

TestComponent
Factory 

testProduceLocal SFAFactor
y 

produce Exception 
is caught 

rcs.xml, 
ita.properties.fails, 

errormessage_US.pro
perties 

2.2 Performance Analysis 

2.2.1 Summary 
This section reviews the performance testing of the ITA Component Factory framework.  Its purpose is to 
provide an architectural review of the framework and identify potential performance issues and 
performance considerations that an application development group should be aware of when using the 
framework.  

A thorough performance review of the ITA Component Factory framework revealed that this framework 
performs very well, using objects judiciously and using memory responsibly.   

The test did not uncover deficiencies in the Component Factory framework itself.  Instead, it showed that 
the framework is fast and lightweight, though framework configurations and improper use of the 
Logging framework might lead to slow performance.  This behavior would be the result of formatting or 
logging messages in ways that are resource intensive or involve subsystem latencies. These concerns 
however are outside the scope of the Component Factory. 

2.2.2 Test Environment 
The testing harness was run on a standard SFA developer workstation.  The hardware consisted of a 
Compaq Deskpro with a single 600 MHz Pentium III processor and 512 MB of RAM.  The machine ran 
Windows NT 4.0 Service Pack 6.  The Java environment was Sun’s JDK 1.3.  While tests were run, no 
other applications were loaded into memory, and the system was not interacted with.  This was done in 
order to leave all resources available to the test harness, and eliminate the possibility of unexplained 
behavior in the tables of results. 

2.2.3 Test Configuration 
The ITA Component Factory framework was configured in a very standard manner, as it would be in 
actual usage.  The configuration of the framework implements Logging and Exception frameworks. 
Therefore, any configurations these frameworks require were used. 

2.2.4 Testing Scenarios 
This Component Factory performance test focused on one usage scenario for its analysis: The creation of a 
Local Factory Producer defined by this property file: 

ita.factory.producer.default=gov.ed.sfa.ita.componentfactory.SFALocalProducer 
ita.factory.env.producer.default.classname=gov.ed.sfa.ita.componentfactory.RCS 
ita.factory.producer.localProducer=gov.ed.sfa.ita.componentfactory.SFALocalPro
ducer 
ita.factory.target.producer.alpha=localProducer 
ita.factory.env.target.alpha.classname=gov.ed.sfa.ita.componentfactory.SFASeri
alizableObject 
 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 15

Here is the testing code: 

package gov.ed.sfa.ita.componentfactory; 
 
import java.io.*; 
import gov.ed.sfa.ita.logging.Syslog; 
import gov.ed.sfa.ita.exception.SFAException; 
import gov.ed.sfa.ita.exception.SFAExceptionFactory; 
import gov.ed.sfa.ita.exception.SFATrace; 
 
public class TestComponentFactory { 
 public TestComponentFactory() { 
 } 
 
 public static void main(String[] args) throws SFAException { 
 
     System.out.println("Starting main..."); 
   Syslog.addLogging(); 
   String homedir = System.getProperty("user.home"); 
    
  java.util.Properties p = new java.util.Properties(); 
  File configfile = new File(homedir, "ita.properties"); 
 
  try { 
   p.load(new FileInputStream(configfile)); 
  } catch (IOException e) { 
   Syslog.log( 
    TestComponentFactory.class, 
    "RCS_CFactory", 
    null, 
    "Could not load the component factory properties 
file\n", 
    Syslog.ERROR); 
  } 
 
  gov.ed.sfa.ita.componentfactory.SFAFactory.setEnvironment(p); 
 
  gov.ed.sfa.ita.componentfactory.RCS defaultobj = 
   (gov.ed.sfa.ita.componentfactory.RCS) 
SFAFactory.produce("default1"); 
 
  if (defaultobj != null) { 
   Syslog.log( 
    TestComponentFactory.class, 
    "RCS_CFactory", 
    "Requested object is produced.", 
    defaultobj, 
    Syslog.INFO); 
  } else { 
   Syslog.log( 
    TestComponentFactory.class, 
    "RCS_CFactory", 
    null, 
    "Requested object is null - need more investigation.", 
    Syslog.ERROR); 
  } 
 
  gov.ed.sfa.ita.componentfactory.SFASerializableObject obj = 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 16

   (gov.ed.sfa.ita.componentfactory.SFASerializableObject) 
SFAFactory.produce( 
    "alpha"); 
 
  if (obj != null) { 
   Syslog.log( 
    TestComponentFactory.class, 
    "RCS_CFactory", 
    "Requested object is produced.", 
    obj, 
    Syslog.INFO); 
  } else { 
   Syslog.log( 
    TestComponentFactory.class, 
    "RCS_CFactory", 
    null, 
    "Requested object is null - need more investigation.", 
    Syslog.ERROR); 
  } 
 
 } 
} 
 
 

2.2.5 Analysis 
The analysis consists of three parts: 

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code to 
identify loitering object and over-allocation of objects.   

2. Garbage Collection: The garbage collector is a process that runs on a low priority thread.  When 
the JVM attempts to allocate an object but the Java heap is full, the JVM calls the garbage 
collector.  The garbage collector frees memory using some algorithm to remove unused objects.  
Examining the activities of the garbage collection will give a good indication of the performance 
impact of the garbage collector on the application. 

3. Code Efficiency: Identifies any performance bottleneck due to inefficient code algorithms. 

 

2.2.5.1 Memory (Heap) Usage 

The performance test utilized JProbe Profiler’s Memory Debugger to identify the parts of the Component 
Factory framework that might be causing loitering objects.  This was accomplished by analysis of the Java 
heap.  The Runtime Heap Summary window can be used to view instance counts and information on 
allocating methods.  

The Heap Usage Chart below plots the size of the Java heap with a time interval of 1 second. The chart 
visualizes memory use within the Java heap. It displays the available size of the Java heap (the light gray 
line above 2000 KB) and the used memory (the dark lines with peaks) over time. 

The heap usage chart shows a series of spikes.  Steep spikes in the Heap Usage Chart represent temporary 
objects being allocated and then garbage collected. If the levels of the troughs become higher over time, 
then not all the temporary objects are garbage collected.  Even though multiple objects are being created 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 17

and destroyed, the troughs remain steady over time.  As a result, there do not appear to be any lingering 
objects. 

 

Runtime Heap Usage 

 

2.2.5.2 Garbage collections 

The Garbage Monitor was used to identify the classes that are responsible for large allocations of short-
lived objects. It shows the cumulative results of successive garbage collections during the session. The 
Garbage Monitor shows only the top ten classes, representing the classes with the most instances garbage 
collected. During the session, the top ten classes will change as the number of garbage-collected objects 
accumulates.  The list below is the final top three, displaying cumulative objects created at the end of 
program execution. 

Each row identifies the class by package name and class name. The next columns state, in order, the 
number of garbage collected objects (GC’ed column) for the class, the number of instances remaining in 
the heap (Alive column), and the method that allocated the instances of the class (AllocatedAt column).  
The same class can appear more than once because more than one method allocated instances of the class. 

The chart below shows expected activity and does not show anything that would indicate a performance 
problem.  These numbers are in line with the framework requirements and expected behavior. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 18

 

Garbage Collection Statistics 

Package Class GC'ed Alive Allocated At 

gov.ed.sfa.ita.exception SFATrace 1,974 1 
gov.ed.sfa.ita.componentfactory.
SFALocalProducer.produce 

gov.ed.sfa.ita.componentfactory SFASerializableObject 986 1 java.lang.Class.newInstance0 

gov.ed.sfa.ita.componentfactory RCS 986 1 java.lang.Class.newInstance0 

 

2.2.5.3 Code Efficiency 

There are nine efficiency metrics that can be collected in JProbe — five basic metrics and four compound 
metrics. The basic metrics include Number of Calls, Method Time, Cumulative Time, Method Object 
Count, and Cumulative Object Count. The compound metrics are averages per number of calls, including 
Average Method Time, Average Cumulative Time, Average Method Object Count, and Average 
Cumulative Object Count. Time is measured as CPU time.  

The following list defines the nine performance metrics: 

• Number of Calls - The number of times the method was invoked. 
• Method Time - The amount of time spent executing the method, excluding time spent in its 

descendants. 
• Cumulative Time - The total amount of time spent executing the method, including time spent in its 

descendants but excluding time spent in recursive calls to descendants. 
• Method Object Count - The number of objects created during the method’s execution, excluding those 

created by its descendants. 
• Cumulative Object Count - The total number of objects created during the method’s execution, 

including those created by its descendants. 
• Average Method Time - Method Time divided by Number of Calls.  
• Average Cumulative Time - Cumulative Time divided by Number of Calls. 
• Average Method Object - Count Method Object Count divided by Number of Calls. 
 

The charts on the following pages serve to document the performance characteristics of the factory 
framework with lists based on the above metrics:  

• Number of Calls 
• Average Cumulative Time 
• Average Method Time 
• Average Cumulative Objects 
• Average Method Objects 
 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 19

These measures are basic indicators of processing resource utilization.  The lists can be reviewed for 
unexpected activity or optimization opportunities. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 20

Methods with the most calls: 

Number of Calls 

Name Calls 
Average 
Cumulative Time 

Average Method 
Time Cumulative Objects 

Average 
Cumulative 
Objects 

Average 
Method 
Objects 

SFAFactory.produce(String) 2,000 3,846.2 (  0.0%) 2.7 (  0.0%) 107,378 ( 62.8%) 53 (  0.0%) 0 (  0.0%) 

SFAFactory.produce(String, Object[]) 2,000 3,843.5 (  0.0%) 11.2 (  0.0%) 107,378 ( 62.8%) 53 (  0.0%) 0 (  0.0%) 

SFALocalProducer.produce(String, Object[], Properties) 2,000 2,795.8 (  0.0%) 33.4 (  0.0%) 82,639 ( 48.3%) 41 (  0.0%) 1 (  0.0%) 

SFATrace.<init>(Object, String) 2,000 2,644.4 (  0.0%) 26.7 (  0.0%) 77,079 ( 45.1%) 38 (  0.0%) 1 (  0.0%) 

SFATrace.getTrace() 2,000 2,394.7 (  0.0%) 78.7 (  0.0%) 61,007 ( 35.7%) 30 (  0.0%) 4 (  0.0%) 

Throwable.printStackTrace(PrintWriter) 2,000 1,749.9 (  0.0%) 1,748.7 (  0.0%) 37,003 ( 21.6%) 18 (  0.0%) 18 (  0.0%) 

Syslog.debug(Object, Object) 2,000 120.2 (  0.0%) 120.2 (  0.0%) 6,070 (  3.6%) 3 (  0.0%) 3 (  0.0%) 

PrintWriter.<init>(Writer) 2,000 62.0 (  0.0%) 62.0 (  0.0%) 2,000 (  1.2%) 1 (  0.0%) 1 (  0.0%) 

SFAException.<init>() 2,000 40.3 (  0.0%) 3.2 (  0.0%) 4,000 (  2.3%) 2 (  0.0%) 0 (  0.0%) 

Exception.<init>() 2,000 37.1 (  0.0%) 37.1 (  0.0%) 4,000 (  2.3%) 2 (  0.0%) 2 (  0.0%) 

StringWriter.<init>() 2,000 34.2 (  0.0%) 34.2 (  0.0%) 4,000 (  2.3%) 2 (  0.0%) 2 (  0.0%) 

StringWriter.toString() 2,000 33.8 (  0.0%) 33.8 (  0.0%) 2,000 (  1.2%) 1 (  0.0%) 1 (  0.0%) 

SFAExceptionFactory.getInstance() 2,000 26.0 (  0.0%) 1.4 (  0.0%) 1,202 (  0.7%) 0 (  0.0%) 0 (  0.0%) 

SFAFactory.init() 2,000 24.0 (  0.0%) 1.8 (  0.0%) 627 (  0.4%) 0 (  0.0%) 0 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 21

Name Calls 
Average 
Cumulative Time 

Average Method 
Time Cumulative Objects 

Average 
Cumulative 
Objects 

Average 
Method 
Objects 

SFAProducer.getProperty(String, Properties) 2,000 20.9 (  0.0%) 3.6 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

SFAFactory.getProducerContainer(String) 2,000 12.8 (  0.0%) 3.9 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

StringTokenizer.hasMoreTokens() 2,000 11.7 (  0.0%) 11.7 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

String.valueOf(Object) 2,000 3.3 (  0.0%) 3.3 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

SFAException.getMessage() 2,000 1.2 (  0.0%) 1.2 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

SFAFactory$ProducerContainer.produce(String, Object[]) 1,000 2,821.3 (  0.0%) 3.1 (  0.0%) 42,097 ( 24.6%) 42 (  0.0%) 0 (  0.0%) 

RCS.<init>() 1,000 3.8 (  0.0%) 2.0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

SFASerializableObject.<init>() 1,000 2.9 (  0.0%) 2.0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

SFAFactory.setEnvironment(Properties) 1,000 1.6 (  0.0%) 1.6 (  0.0%) 0 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 22

Average total time (includes time spent in sub-methods) spent in each method: 

Average Cumulative Time 

Name Calls 
Average 

Cumulative Time 
Average Method 

Time Cumulative Objects 

Average 
Cumulative 

Objects 

Average 
Method 
Objects 

SFAExceptionFactory.<init>() 1 49,028.2 (  0.1%) 121.9 (  0.0%) 1,201 (  0.7%) 1,201 (  0.7%) 4 (  0.0%) 

SFAFactory.initProducers() 1 29,856.8 (  0.1%) 264.3 (  0.0%) 413 (  0.2%) 413 (  0.2%) 4 (  0.0%) 

SFAFactory.doRegisterProducer(String, String) 2 11,966.4 (  0.0%) 83.7 (  0.0%) 354 (  0.2%) 177 (  0.1%) 2 (  0.0%) 

SFAFactory.initTargetProducers() 1 11,512.0 (  0.0%) 120.9 (  0.0%) 178 (  0.1%) 178 (  0.1%) 2 (  0.0%) 

SFAFactory.doRegisterTarget(String, String) 1 8,160.1 (  0.0%) 125.7 (  0.0%) 127 (  0.1%) 127 (  0.1%) 4 (  0.0%) 

SFAFactory.addTargetProducer(String, String, Properties) 1 5,908.8 (  0.0%) 864.1 (  0.0%) 99 (  0.1%) 99 (  0.1%) 3 (  0.0%) 

ClassLoader.loadClassInternal(String) 32 5,397.8 (  0.0%) 5,397.8 (  0.0%) 1,216 (  0.7%) 38 (  0.0%) 38 (  0.0%) 

SFAFactory.produce(String) 2,000 3,846.2 (  0.0%) 2.7 (  0.0%) 107,378 ( 62.8%) 53 (  0.0%) 0 (  0.0%) 

SFAFactory.produce(String, Object[]) 2,000 3,843.5 (  0.0%) 11.2 (  0.0%) 107,378 ( 62.8%) 53 (  0.0%) 0 (  0.0%) 

Properties.load(InputStream) 1 3,813.8 (  0.0%) 3,813.8 (  0.0%) 69 (  0.0%) 69 (  0.0%) 69 (  0.0%) 

SFAFactory.getDefaultEnvironment() 1 3,157.4 (  0.0%) 173.1 (  0.0%) 34 (  0.0%) 34 (  0.0%) 5 (  0.0%) 

SFAFactory.doAddTargetProperty(String, Hashtable) 1 2,954.1 (  0.0%) 138.0 (  0.0%) 44 (  0.0%) 44 (  0.0%) 3 (  0.0%) 

SFAFactory.doAddProducerProperty(String, Hashtable) 1 2,833.9 (  0.0%) 209.2 (  0.0%) 48 (  0.0%) 48 (  0.0%) 7 (  0.0%) 

SFAFactory$ProducerContainer.produce(String, Object[]) 1,000 2,821.3 (  0.0%) 3.1 (  0.0%) 42,097 ( 24.6%) 42 (  0.0%) 0 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 23

Name Calls 
Average 

Cumulative Time 
Average Method 

Time Cumulative Objects 

Average 
Cumulative 

Objects 

Average 
Method 
Objects 

SFALocalProducer.produce(String, Object[], Properties) 2,000 2,795.8 (  0.0%) 33.4 (  0.0%) 82,639 ( 48.3%) 41 (  0.0%) 1 (  0.0%) 

SFATrace.<init>(Object, String) 2,000 2,644.4 (  0.0%) 26.7 (  0.0%) 77,079 ( 45.1%) 38 (  0.0%) 1 (  0.0%) 

SFATrace.getTrace() 2,000 2,394.7 (  0.0%) 78.7 (  0.0%) 61,007 ( 35.7%) 30 (  0.0%) 4 (  0.0%) 

 

 

Average time spent within a method (not including sub-methods): 

Average Method Time 

Name Calls 
Average 

Cumulative Time 
Average Method 

Time Cumulative Objects 

Average 
Cumulative 

Objects 

Average 
Method 
Objects 

SFAFactory.addTargetProducer(String, String, Properties) 1 5,908.8 (  0.0%) 864.1 (  0.0%) 99 (  0.1%) 99 (  0.1%) 3 (  0.0%) 

PrintStream.println(String) 1 644.9 (  0.0%) 644.9 (  0.0%) 2 (  0.0%) 2 (  0.0%) 2 (  0.0%) 

Hashtable.keys() 5 497.8 (  0.0%) 497.8 (  0.0%) 6 (  0.0%) 1 (  0.0%) 1 (  0.0%) 

Syslog.addLogging() 1 
1,270,697.9 (  

3.3%) 432.0 (  0.0%) 13,240 (  7.7%) 13,240 (  7.7%) 16 (  0.0%) 

File.<init>(String, String) 2 292.7 (  0.0%) 292.7 (  0.0%) 16 (  0.0%) 8 (  0.0%) 8 (  0.0%) 

SFAFactory.initProducers() 1 29,856.8 (  0.1%) 264.3 (  0.0%) 413 (  0.2%) 413 (  0.2%) 4 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 24

Name Calls 
Average 

Cumulative Time 
Average Method 

Time Cumulative Objects 

Average 
Cumulative 

Objects 

Average 
Method 
Objects 

FileInputStream.<init>(File) 1 212.8 (  0.0%) 212.8 (  0.0%) 1 (  0.0%) 1 (  0.0%) 1 (  0.0%) 

SFAFactory.doAddProducerProperty(String, Hashtable) 1 2,833.9 (  0.0%) 209.2 (  0.0%) 48 (  0.0%) 48 (  0.0%) 7 (  0.0%) 

SFAFactory.getDefaultEnvironment() 1 3,157.4 (  0.0%) 173.1 (  0.0%) 34 (  0.0%) 34 (  0.0%) 5 (  0.0%) 

SFAFactory.doAddTargetProperty(String, Hashtable) 1 2,954.1 (  0.0%) 138.0 (  0.0%) 44 (  0.0%) 44 (  0.0%) 3 (  0.0%) 

SFAFactory.doRegisterTarget(String, String) 1 8,160.1 (  0.0%) 125.7 (  0.0%) 127 (  0.1%) 127 (  0.1%) 4 (  0.0%) 

StringTokenizer.nextToken() 6,000 125.6 (  0.0%) 125.6 (  0.0%) 6,000 (  3.5%) 1 (  0.0%) 1 (  0.0%) 

SFAExceptionFactory.<init>() 1 49,028.2 (  0.1%) 121.9 (  0.0%) 1,201 (  0.7%) 1,201 (  0.7%) 4 (  0.0%) 

SFAFactory.initTargetProducers() 1 11,512.0 (  0.0%) 120.9 (  0.0%) 178 (  0.1%) 178 (  0.1%) 2 (  0.0%) 

Syslog.debug(Object, Object) 2,000 120.2 (  0.0%) 120.2 (  0.0%) 6,070 (  3.6%) 3 (  0.0%) 3 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 25

Average Cumulative Objects (includes objects created in sub-methods): 

Average Cumulative Objects 

Name Calls 
Average 

Cumulative Time 
Average Method 

Time 
Cumulative 

Objects 

Average 
Cumulative 

Objects 
Average 

Method Objects 

SFAExceptionFactory.<init>() 1 49,028.2 (  0.1%) 121.9 (  0.0%) 1,201 (  0.7%) 1,201 (  0.7%) 4 (  0.0%) 

ResourceBundle.getBundle(String) 1 48,834.4 (  0.1%) 48,834.4 (  0.1%) 1,197 (  0.7%) 1,197 (  0.7%) 1,197 (  0.7%) 

SFAFactory.initProducers() 1 29,856.8 (  0.1%) 264.3 (  0.0%) 413 (  0.2%) 413 (  0.2%) 4 (  0.0%) 

SFAFactory.initTargetProducers() 1 11,512.0 (  0.0%) 120.9 (  0.0%) 178 (  0.1%) 178 (  0.1%) 2 (  0.0%) 

SFAFactory.doRegisterProducer(String, String) 2 11,966.4 (  0.0%) 83.7 (  0.0%) 354 (  0.2%) 177 (  0.1%) 2 (  0.0%) 

SFAFactory.doRegisterTarget(String, String) 1 8,160.1 (  0.0%) 125.7 (  0.0%) 127 (  0.1%) 127 (  0.1%) 4 (  0.0%) 

SFAFactory.addTargetProducer(String, String, Properties) 1 5,908.8 (  0.0%) 864.1 (  0.0%) 99 (  0.1%) 99 (  0.1%) 3 (  0.0%) 

Properties.load(InputStream) 1 3,813.8 (  0.0%) 3,813.8 (  0.0%) 69 (  0.0%) 69 (  0.0%) 69 (  0.0%) 

SFAFactory.produce(String, Object[]) 2,000 3,843.5 (  0.0%) 11.2 (  0.0%) 107,378 ( 62.8%) 53 (  0.0%) 0 (  0.0%) 

SFAFactory.produce(String) 2,000 3,846.2 (  0.0%) 2.7 (  0.0%) 107,378 ( 62.8%) 53 (  0.0%) 0 (  0.0%) 

SFAFactory.doAddProducerProperty(String, Hashtable) 1 2,833.9 (  0.0%) 209.2 (  0.0%) 48 (  0.0%) 48 (  0.0%) 7 (  0.0%) 

SFAFactory.doAddTargetProperty(String, Hashtable) 1 2,954.1 (  0.0%) 138.0 (  0.0%) 44 (  0.0%) 44 (  0.0%) 3 (  0.0%) 

SFAFactory$ProducerContainer.produce(String, Object[]) 1,000 2,821.3 (  0.0%) 3.1 (  0.0%) 42,097 ( 24.6%) 42 (  0.0%) 0 (  0.0%) 

SFALocalProducer.produce(String, Object[], Properties) 2,000 2,795.8 (  0.0%) 33.4 (  0.0%) 82,639 ( 48.3%) 41 (  0.0%) 1 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 26

Name Calls 
Average 

Cumulative Time 
Average Method 

Time 
Cumulative 

Objects 

Average 
Cumulative 

Objects 
Average 

Method Objects 

SFATrace.<init>(Object, String) 2,000 2,644.4 (  0.0%) 26.7 (  0.0%) 77,079 ( 45.1%) 38 (  0.0%) 1 (  0.0%) 

ClassLoader.loadClassInternal(String) 32 5,397.8 (  0.0%) 5,397.8 (  0.0%) 1,216 (  0.7%) 38 (  0.0%) 38 (  0.0%) 

SFAFactory.getDefaultEnvironment() 1 3,157.4 (  0.0%) 173.1 (  0.0%) 34 (  0.0%) 34 (  0.0%) 5 (  0.0%) 

SFATrace.getTrace() 2,000 2,394.7 (  0.0%) 78.7 (  0.0%) 61,007 ( 35.7%) 30 (  0.0%) 4 (  0.0%) 

 

 

Average number of Objects within a method (not including submethods): 

 
Average Method Objects 

Name Calls 
Average 

Cumulative Time 
Average Method 

Time 
Cumulative 

Objects 

Average 
Cumulative 

Objects 
Average 

Method Objects 

SFAFactory.doAddProducerProperty(String, Hashtable) 1 2,833.9 (  0.0%) 209.2 (  0.0%) 48 (  0.0%) 48 (  0.0%) 7 (  0.0%) 

SFAFactory.getDefaultEnvironment() 1 3,157.4 (  0.0%) 173.1 (  0.0%) 34 (  0.0%) 34 (  0.0%) 5 (  0.0%) 

SFAExceptionFactory.<init>() 1 49,028.2 (  0.1%) 121.9 (  0.0%) 1,201 (  0.7%) 1,201 (  0.7%) 4 (  0.0%) 

SFAFactory.initProducers() 1 29,856.8 (  0.1%) 264.3 (  0.0%) 413 (  0.2%) 413 (  0.2%) 4 (  0.0%) 

SFAFactory.doRegisterTarget(String, String) 1 8,160.1 (  0.0%) 125.7 (  0.0%) 127 (  0.1%) 127 (  0.1%) 4 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 27

Name Calls 
Average 

Cumulative Time 
Average Method 

Time 
Cumulative 

Objects 

Average 
Cumulative 

Objects 
Average 

Method Objects 

SFATrace.getTrace() 2,000 2,394.7 (  0.0%) 78.7 (  0.0%) 61,007 ( 35.7%) 30 (  0.0%) 4 (  0.0%) 

.Thread-0. 1 1,405.8 (  0.0%) 1,405.8 (  0.0%) 4 (  0.0%) 4 (  0.0%) 4 (  0.0%) 

SFAFactory.addTargetProducer(String, String, Properties) 1 5,908.8 (  0.0%) 864.1 (  0.0%) 99 (  0.1%) 99 (  0.1%) 3 (  0.0%) 

SFAFactory.doAddTargetProperty(String, Hashtable) 1 2,954.1 (  0.0%) 138.0 (  0.0%) 44 (  0.0%) 44 (  0.0%) 3 (  0.0%) 

Syslog.debug(Object, Object) 2,000 120.2 (  0.0%) 120.2 (  0.0%) 6,070 (  3.6%) 3 (  0.0%) 3 (  0.0%) 

SFAFactory.initTargetProducers() 1 11,512.0 (  0.0%) 120.9 (  0.0%) 178 (  0.1%) 178 (  0.1%) 2 (  0.0%) 

SFAFactory.doRegisterProducer(String, String) 2 11,966.4 (  0.0%) 83.7 (  0.0%) 354 (  0.2%) 177 (  0.1%) 2 (  0.0%) 

 

 

 



   

 

  

2.3 User Guide 

2.3.1 Introduction 
2.3.1.1 Purpose 

This section provides a high-level summary and usage of the Integrated Technical Architecture (ITA) 
standard Java component factory Framework.  The component factory framework is part of a suite of 
frameworks provided to SFA applications by the ITA initiative.  The goal of the ITA initiative is to 
promote code reuse, standardization, and application of best practices across all SFA system development 
projects.   

2.3.1.2 Intended audience 

This section is intended for ITA and SFA application programmers who need to understand the ITA 
component factory framework in order to use this framework in their applications. 

2.3.2 Background 
The Component Factory, also known as the Object Factory, is a producer of objects.  The ITA custom 
Component Factory incorporates the following:  

• Support of applications running on the IBM WebSphere Application Server (WAS) 
• Limit of the framework only to local classes since SFA applications are not implementing EJBs in 

their applications 
• Integration with the ITA exception handling framework 
• Integration with the ITA logging framework 
 

2.3.2.1 Scope 

This section covers installation, configuration, and features of the ITA component factory framework.  
This section contains information on SFALocalProducer.  While the component factory uses the logging 
framework and the exception handling framework, these frameworks are not covered in this section.  
Consult the logging and exception handling user guide for more information on the logging and 
exception handling frameworks. 

2.3.2.2 Assumptions 

It is assumed that the component factory framework will function in a J2EE application server 
environment.  As the current production server for SFA is IBM’s WebSphere 3.5, the framework will be 
compiled using its required JDK version 1.2.2.  It should also work with the current JavaServer Pages 
(1.1), Java Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0) specifications 
for this server.   



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 29

2.3.3 Description 
2.3.3.1 Overview 

The component factory implements the factory method pattern.  There is no single class that makes the 
decision as to which subclass to instantiate.  Instead, the superclass (SFAProducer) defers the decision to 
each subclass.   A program written using this pattern defines an abstract class that creates objects, but lets 
each subclass decide which object to create.   
 
The component factory framework defines a general and extensible factory mechanism.  It allows 
developers to completely decouple how objects and components are instantiated from their use.    The 
ITA component factory framework offers a standardized approach to retrieving system components 
through a predefined lookup mechanism.   

2.3.3.2 Main Concepts 

The component factory framework is a producer of objects. It accepts some information about how to 
create an object, such as a reference, and then returns an instance of that object.  Components must be 
registered with the component factory.    In order to use the component factory the user needs to 
understand producers and targets. 

Producers: Producers define the strategy to produce an object reference for a given key.  Producers are 
named entities that produce objects based on configuration properties in the properties file.     

Default Producer:  A default producer may be defined by setting the property, 
sfa.factory.producer.default, to the desired producer class.  If no default is set, then a producer is not used 
for the target and a warning should be logged.  The ITA 2.0 Logging framework should be used for all 
logging purposes.   A default producer is set through the properties as shown below. 
sfa.factory.producer.default = <classname> 

 Targets: Targets logically represent what clients want to create.  A named producer creates targets.  More 
specific properties may be applied to each target.  Producers use these properties to produce target 
instances.  Typically, target properties override more general producer level properties with the same 
name, but this is dependent on the producer implementation (via the SFAProducer.getProperty() 
method).  

2.3.4 Installation  
2.3.4.1 Software requirements 

The component factory framework is J2EE compliant.  The framework requires JDK 1.2  (recommended).  
It also works with JDK 1.3.  

Application Server:  The ITA team will test the component factory framework in the WebSphere 
Application Server 3.5.  There is nothing in the logging package that will tie the framework to a particular 
application server. 

ITA Component Factory Package:  The ITA component factory needs the following jar files:    

• rcs_componentFactory_ v1.1.jar 
• ita.properties 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 30

The ita.properties file allows developers to define the object they want to create it. The 
rcs_componentFactory_v1.0.jar depends on the ITA Logging and ITA Exception Handling frameworks.  
Developers should refer to the ITA Logging and ITA Exception Handling user guide for more details.  
The ITA logging framework requires following jar files: 

• protomatter-1_1_5.jar 
• jakarta-oro-2.0.1.jar 
• jdom-B6.jar 
• xerces.jar 
• utility.jar 
• xml.jar 
• rcs_logging_v1.5.jar 
• rcs.xml 
• StartupRcs.jar 
 

The ITA Exception Handling framework requires the following jar files: 

• rcs_exceptionHandling_v1.5.jar 
• errorMessages_en_US.properties 
 

2.3.4.2 Installation procedures 

1. Copy all of the above jar files into a directory (e.g. /www/dev/rcs/jars).      

2. Copy rcs.xml, errorMessages_en_US.properties into a directory (eg. 
/www/dev/ita/properties).     

3. Copy ita.properties into the user’s home directory (eg. root directory in the Solaris 
machine).       

4. Add the Jar files on the classpath.                                 

2.3.5 Configuration 
The component factory package needs to be added in WebSphere’s classpath.  The following steps show 
how to add the classpath on WebSphere.                                                                                                            

a) Bring up the WebSphere admin console and select your application server on the console.                   

b) Stop your application server.                                                                                                                   

c) Click on the ‘General’ Tab and add the following line in the Command Line Arguments                  
- classpath /www/dev/rcs/jars/                                                                                                          

d) Restart your application server. 

Since the component factory uses the ITA logging and exception handling frameworks, the developer 
needs to refer to the logging and exception handling user guide to set up the framework correctly.  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 31

2.3.6 Usage Scenarios 
The following two examples illustrate the use of the component factory. 

2.3.6.1 Creating a default object 

The following is an example of local component registration in the <application>.properties  
(e.g. ita.properties)file: 

### Define a default Producer                                                                                      
ita.factory.producer.default=gov.ed.sfa.ita.componentfactory.SFAL
ocalProducer 

###Define the object you want to create 
ita.factory.env.producer.default.classname=gov.ed.sfa.ita.componentfactory.RCS 
sfa.factory.producer.localProducer=gov.ed.sfa.ita.componentfactory.SFALocalProducer 

 

Once the components are registered the program needs to lookup the component.   

gov.ed.sfa.ita.TestComponentFactory obj =      
(gov.ed.sfa.ita.TestComponentFactory)SFAFactory.produce( "default" 
); 

Syslog.log(TestComponentFactory.class, “RCS_Cfactory”, “Requested object is produced.” , 
obj, Syslog.INFO); 

 

The sample program can be found at section 6.  The output of the above fragment of code is as follows: 

20:11:15 09/07 [INFO] TestComponentFactory Requested object is produced 
gov.ed.sfa.ita.componentfactory.RCS 

2.3.6.2 Creating a local object 

The following example shows how to create an instance of a local object 

### Define the local producer                                                                                                      
ita.factory.producer.localProducer=gov.ed.sfa.ita.componentfactory.SFA
LocalProducer 

### Alpha is a target-name and localProducer is producer name                                                                                   
ita.factory.target.producer.alpha=localProducer          

###Define the object you want to create                              
ita.factory.env.target.alpha.classname=gov.ed.sfa.ita.componentfactory
.SFASerializableObject 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 32

Once the components are registered the program needs to lookup the component.   

gov.ed.sfa.ita.TestComponentFactory obj2 =      
(gov.ed.sfa.ita.TestComponentFactory)SFAFactory.produce( "alpha" ); 

Syslog.log(TestComponentFactory.class, “RCS_Cfactory”, “Requested 
object is produced.” , obj2, Syslog.INFO); 

 

The sample program can be found at section 6.  The output of the above fragment of code is as follows: 

20:11:15 09/07 [INFO] TestComponentFactory Requested object is produced 
gov.ed.sfa.ita.componentfactory.SFASerializableObject 

2.3.7 Sample Code 
The following sample code shows different ways to create an object using the component factory. 

package gov.ed.sfa.ita.componentfactory; 

 
import java.io.*; 
import gov.ed.sfa.ita.logging.Syslog; 
import gov.ed.sfa.ita.exception.SFAException; 
import gov.ed.sfa.ita.exception.SFAExceptionFactory; 
import gov.ed.sfa.ita.exception.SFATrace; 
/** 
 * TestComponentFactory:  This class tests the component factory.  It 
uses the ITA logging and exception handling framework 
 * Creation date: (7/2/01 3:14:43 PM) 
 * @author: Roshani Bhatt 
 */ 
public class TestComponentFactory { 
    public TestComponentFactory() { 
    } 
    /** 
     * Creation date: (7/2/01 3:15:34 PM) 
     * @param args java.lang.String[] 
     */ 
    public static void main(String[] args) throws SFAException { 
    //loads the logging configuration file 
         Syslog.addLogging(); 
         String homedir = System.getProperty("user.home"); 
          
        java.util.Properties p = new java.util.Properties(); 
        File configfile = new File(homedir, "ita.properties"); 
        try { 
            p.load(new FileInputStream(configfile)); 
        } catch (IOException e) { 
            Syslog.log( 
                TestComponentFactory.class, 
                "RCS_CFactory", 
                null, 
                "Could not load the component factory properties 
file\n", 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 33

                Syslog.ERROR); 
        } 
        gov.ed.sfa.ita.componentfactory.SFAFactory.setEnvironment(p); 
        gov.ed.sfa.ita.componentfactory.RCS defaultobj = 
            (gov.ed.sfa.ita.componentfactory.RCS) 
SFAFactory.produce("default1"); 
        if (defaultobj != null) { 
             
            Syslog.log( 
                TestComponentFactory.class, 
                "RCS_CFactory", 
                "Requested object is produced.", 
                defaultobj, 
                Syslog.INFO); 
        } else { 
             
            Syslog.log( 
                TestComponentFactory.class, 
                "RCS_CFactory", 
                null, 
                "Requested object is null - need more investigation.", 
                Syslog.ERROR); 
        } 
        gov.ed.sfa.ita.componentfactory.SFASerializableObject obj = 
            (gov.ed.sfa.ita.componentfactory.SFASerializableObject) 
SFAFactory.produce( 
                "alpha"); 
        if (obj != null) { 
            
            Syslog.log( 
                TestComponentFactory.class, 
                "RCS_CFactory", 
                "Requested object is produced.", 
                obj, 
                Syslog.INFO); 
        } else { 
            
            Syslog.log( 
                TestComponentFactory.class, 
                "RCS_CFactory", 
                null, 
                "Requested object is null - need more investigation.", 
                Syslog.ERROR); 
        } 
   } } 

 

2.3.8 Resources 
The following resources have more information about the component factory. 

• RCS Component Factory Design Document 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 34

 

3 RCS  – Email Framework 
Previously, SFA applications used different methods to send e-mail messages.  These methods included 
using a previous version of the JavaMail API and a proprietary design that retrieves messages out of an 
Oracle database, processes each message with UNIX shell scripts, and then sends the e-mail with the 
operating system utility sendmail.   

The e-mail framework provides SFA with a common way to generate e-mail messages from applications.  
The e-mail framework uses Sun Microsystems’ JavaMail API 1.2, which provides a standard interface for 
Java programs to send e-mails to a Simple Mail Transport Protocol (SMTP) Mail server.  The intent is to 
supply an easy to use interface with JavaMail in SFA’s applications.     

3.1 Testing Conditions & Results 

3.1.1 Automated Testing 
Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class Method Class Name Method Name Results Data File Name 

1 The m_debug 
variable has been 

initilized 

TestSFASmtpClient testgetDebug SFASmtpClient getDebug return 
variable 

rcs.xml,    
errormessages.

properties 
2 The 

m_fileAttachment
s variable has 
been initilized 

TestSFASmtpClient testgetfileAttachments SFASmtpClient getfileAttachments return 
variable 

rcs.xml,    
errormessages.

properties 

3 the m_hostname 
has been initilized 

TestSFASmtpClient testgetHost SFASmtpClient getHost return 
variable 

 rcs.xml,    
errormessages.

properties 

4 the m_SentDate 
has been initilized 

TestSFASmtpClient testgetSentDate SFASmtpClient getSentDate return 
variable 

 rcs.xml,    
errormessages.

properties 
5 TextContent has 

been initilized 
TestSFASmtpClient testgetTextContent SFASmtpClient getTextContent return 

variable 
 rcs.xml,    

errormessages.
properties 

6 The m_debug 
variable will be 
set to true and 
then checked 

TestSFASmtpClient testsetDebug SFASmtpClient setDebug return 
variable 

rcs.xml,    
errormessages.

properties 

7 The 
m_fileAttachment
s variable will be 

set and then 
checked 

TestSFASmtpClient testsetfileAttachments SFASmtpClient setfileAttachments return 
variable 

rcs.xml,    
errormessages.

properties 

8 the m_hostname 
will be set and 
then checked 

TestSFASmtpClient testsetHost SFASmtpClient setHost return 
variable 

 rcs.xml,    
errormessages.

properties 

9 the m_SentDate 
will be set and 
then checked 

TestSFASmtpClient testsetSentDate SFASmtpClient setSentDate return 
variable 

 rcs.xml,    
errormessages.

properties 
10 m_textContent 

will be set and 
then checked 

TestSFASmtpClient testsetTextContent SFASmtpClient setTextContent return 
variable 

 rcs.xml,    
errormessages.

properties 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 35

Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class Method Class Name Method Name Results Data File Name 

11  "From" string 
address=null 

TestSFASmtpClient testSFASmtpClientsen
dMessageStringfrom_i

s_null 

SFASmtpClient sendMessage(strin
g) 

The email 
is not sent 

and an 
SFAExce
ption is 
thrown 

 rcs.xml,    
errormessages.

properties 

12  "To" string 
address=null 

TestSFASmtpClient testSFASmtpClientsen
dMessageStringto_is_

null 

SFASmtpClient sendMessage(strin
g) 

The email 
is not sent 

and an 
SFAExce
ption is 
thrown 

 rcs.xml,    
errormessages.

properties 

13  "Reply" string 
address=null 

TestSFASmtpClient         
testSFASmtpClientsen
dMessageStringreply_i

s_null 

SFASmtpClient sendMessage(strin
g) 

The email 
is not sent 

and an 
SFAExce
ption is 
thrown 

 rcs.xml,    
errormessages.

properties 

3.2 Performance Analysis 

3.2.1 Summary 
RCS Email framework is tested under a test harness using JProbe Profiler.  Statistics collected is filtered to 
reflect the effects of SFASmtpClient class only.  The test harness constructs and sends a simple email 
message using SFASmtpClient class.  The heap analysis shows no loitering objects and the performance 
analysis suggests efficient coding.  A general performance metrics is given as a comparison between email 
with and without attachment.  The general performance metrics gives a rough idea how the framework 
performs.  

3.2.2 Test Environment 
The RCS Email framework performance test is conducted in JProbe.  JProbe is a performance-profiling 
tool for Java based programs.  Two key groups of statistics are given from the profiler: memory (heap) 
usage and time spent on each method within the program (performance).  By using this performance-
profiling tool, users can identify loitering objects and inefficiencies in code more easily.  JProbe also has 
drill-down capability that allows gathering detailed information on individual methods and the 
interaction among them.  

The performance test is done on Windows 2000 platform.   The focus of the performance test is finding 
loitering objects and time spent on each method relative to each other.  Even though the framework is 
envisioned to be used under a Unix environment, the test result gathered from Windows 2000 is 
transferable and valid because of the focus of the test.  The hardware that is used to carry out the test is 
Toshiba Tecra 8100 with a PIII 800 MHz processor and 256 M RAM.   

RCS Email framework is an API and needs to be tested under a harness.  The statistics taken from the 
performance test excludes the harness by drilling down to the sendMessage() method. 

Within the email framework, the SMTP server and the accompanying accessing information need to be 
supplied.  The test is performed without this information since email severs used will be different for each 
application.  As mentioned above, the focus of the test is to find loitering objects and locate inefficiencies 
within the code itself, the actual time spent on accessing the email server is out of the control of the 
framework and thus not tested.   



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 36

3.2.3 Test Configuration 
The Email framework uses the Logging framework as part of its reporting function.  Messages are 
reported on the screen as well as logged in a designated file.  Messages with severity level “Info” or above 
are logged.  The logging configuration used for the performance test is as follows: 

  <?xml version="1.0" encoding="UTF-8" ?>  
- <Syslog defaultMask="INFO" backgroundLogging="false"> 
- <Logger class="com.protomatter.syslog.FileLog" name="logging"> 
  <fileName>c:/gov/ed/sfa/ita/logging/test.log</fileName>  
  <autoFlush>true</autoFlush>  
  <stream>System.out</stream>  
- <Policy class="com.protomatter.syslog.SimpleLogPolicy"> 
  <channels>ALL_CHANNEL</channels>  
  <logMask>INHERIT_MASK</logMask>  
  </Policy> 
+ <Format class="com.protomatter.syslog.SimpleSyslogTextFormatter"> 
  </Logger> 
- <Logger class="com.protomatter.syslog.PrintWriterLog" 
name="PrintWriterLog.err"> 
  <autoFlush>true</autoFlush>  
  <stream>System.out</stream>  
- <Policy class="com.protomatter.syslog.SimpleLogPolicy"> 
  <channels>ALL_CHANNEL</channels>  
  <logMask>INHERIT_MASK</logMask>  
  </Policy> 
- <Format class="com.protomatter.syslog.SimpleSyslogTextFormatter"> 
  <showChannel>false</showChannel>  
  <showThreadName>false</showThreadName>  
  <showHostName>false</showHostName>  
  <dateFormat>HH:mm:ss MM/dd</dateFormat>  
  <dateFormatCacheTime>1000</dateFormatCacheTime>  
  <dateFormatTimeZone>America/New_York</dateFormatTimeZone>  
  </Format> 
  </Logger> 
 </Syslog> 

 
 

3.2.4 Test Scenario 
The test harness is a simple program that constructs and sends an email to its SMTP server.  The test is 
repeated 250 times to take a statistical average.  The test harness is provided below: 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 37

import gov.ed.sfa.ita.email.SFASmtpClient; 
import java.util.Date; 
/*test harness for email framework. 
 *The harness constructs and sends email to its smtp server. 
 *The task is repeated for 250 times. 
 */ 
public class emailTest { 
 //the "to" field of the email message 
 private static String to = "nullcline@yahoo.com"; 
 //the "from" field of the eamil message 
 private static String from = "chi-yen.yang@accenture.com"; 
 //the "reply to" field of the email message 
 private static String rpt = "nullcline32@hotmail.com"; 
 //the "subject" of the email message 
 private static String subject = "test"; 
 /*constructor 
  *constructs and sends email 
  */ 
 public static void main (String args[]) { 
  //sent date 
  Date date; 
  //loop counter 
  int i; 
  for(i = 0; i < 250; i++) { 
   date = new Date(); 
   SFASmtpClient emailClient = new SFASmtpClient(); 
   emailClient.setTextContent("This is a test"); 
   emailClient.setFileAttachments("c:\\test.tst"); 
   try { 
    emailClient.sendMessage(from, to, rpt, 
subject); 
   } 
   catch(gov.ed.sfa.ita.exception.SFAException ex) { 
    System.out.println("Exception"); 
   } 
  } 
 } 
} 

 

3.2.5 Analysis 
The analysis consists of three parts: 

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code to 
identify loitering object and over-allocation of objects.   

2. Garbage Collection: The garbage collector is a process that runs on a low priority thread.  When 
the JVM attempts to allocate an object but the Java heap is full, the JVM calls the garbage 
collector.  The garbage collector frees memory using some algorithm to remove unused objects.  
Examining the activities of the garbage collection will give a good indication of the performance 
impact of the garbage collector on the application. 

3. Code Efficiency: Identifies any performance bottlenecks due to inefficient code algorithms. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 38

 

 

3.2.5.1 Memory (Heap) Usage 

 

JProbe’s heap analysis tool shows the memory usage allocated by the JVM.  The pink portion of the graph 
indicates the maximum heap allocated and the blue portion is the memory used at any given time.  As 
one can see, there is a jump in memory allocation initially.  The memory set at this stage is the default 
JVM memory allocation.  As time passes, a jagged pattern develops.  This type of graph indicates that 
there are a lot of short-lived objects used in the program that require constant garbage collection. 

This particular pattern is expected since the harness runs repetitive tasks that generate short-lived objects.  
This is not an indication that the framework itself generates more than necessary short-lived objects.   

3.2.5.2 Garbage Collection 

Package Class GC'ed Alive Allocated At 

java.lang String 23,869 365  

 char[] 21,872 148  

java.lang String 21,872 210  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 39

Package Class GC'ed Alive Allocated At 

 char[] 19,040 79  

javax.mail.int
ernet hdr 15,687 63  

javax.mail.int
ernet 

HeaderTo
kenizer$T
oken 12,250 0  

 char[] 8,825 31  

 char[] 8,035 199  

 Object[] 7,997 57  

 Object[] 5,531 94  

 

The garbage collections matrix shows the top 10 classes that are garbage collected.  As shown in the 
matrix, String and char classes occupy most of the garbage collection process.  Two classes from 
javax.mail.internet package are also placed in the top 10 list.   

From JProbe’s Heap analyzer, SFASmtpClient class has a change of 0.  A “change” is the difference 
between the number of beginning and the number of end instances in a particular class.  A change of 0 
means all instances of a class are garbage collected and there are no loitering objects.  Since 
SFASmtpClient is the class that is used to access the email framework, it can be concluded that there is no 
loitering objects produced in the framework. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 40

3.2.5.3 Code Efficiency 

Five performance matrices are collected for code efficiency analysis. 

Top 10 methods with most calls: 

Name Package Calls 
Cumulative 
Time Method Time 

Cumulative 
Objects 

Method 
Objects 

String.charAt(int) java.lang 356,152 1,028 (  4.8%) 1,028 (  4.8%) 0 (  0.0%) 0 (  0.0%) 

String.equalsIgnoreCase(String) java.lang 184,535 711 (  3.3%) 570 (  2.7%) 0 (  0.0%) 0 (  0.0%) 

String.indexOf(int, int) java.lang 181,570 640 (  3.0%) 640 (  3.0%) 0 (  0.0%) 0 (  0.0%) 

String.indexOf(int) java.lang 179,863 1,705 (  8.0%) 1,069 (  5.0%) 0 (  0.0%) 0 (  0.0%) 

BufferedInputStream.ensureOpen() java.io 110,266 221 (  1.0%) 221 (  1.0%) 0 (  0.0%) 0 (  0.0%) 

BufferedInputStream.read() java.io 110,250 687 (  3.2%) 402 (  1.9%) 2 (  0.0%) 0 (  0.0%) 

Vector.elementAt(int) java.util 100,798 205 (  1.0%) 205 (  1.0%) 0 (  0.0%) 0 (  0.0%) 

System.arraycopy(Object, int, Object, int, int) java.lang 99,519 261 (  1.2%) 261 (  1.2%) 0 (  0.0%) 0 (  0.0%) 

Vector$1.hasMoreElements() java.util 83,500 143 (  0.7%) 143 (  0.7%) 0 (  0.0%) 0 (  0.0%) 

Vector$1.nextElement() java.util 79,750 137 (  0.6%) 137 (  0.6%) 0 (  0.0%) 0 (  0.0%) 

As shown in the matrix, java.lang, java.io and java.util are most used in the framework.   



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 41

Top 10 methods with most cumulative time: 

Class Package Calls 
Cumulative 
Time Method Time 

Cumulative 
Objects 

Method 
Objects 

SFASmtpClient.sendMessage(String, String, 
String, String) gov.ed.sfa.ita.email 250 21,297 (100.0%) 19 (  0.1%) 280,843 (100.0%) 776 (  0.3%) 

SFASmtpClient.buildSession() gov.ed.sfa.ita.email 250 18,744 ( 88.0%) 43 (  0.2%) 243,915 ( 86.9%) 600 (  0.2%) 

Transport.send(Message) javax.mail 250 14,322 ( 67.3%) 4 (  0.0%) 176,874 ( 63.0%) 0 (  0.0%) 

Transport.send0(Message, Address[]) javax.mail 250 7,466 ( 35.1%) 34 (  0.2%) 68,357 ( 24.3%) 2,003 (  0.7%) 

MimeMessage.saveChanges() javax.mail.internet 250 6,188 ( 29.1%) 3 (  0.0%) 103,517 ( 36.9%) 0 (  0.0%) 

MimeMessage.updateHeaders() javax.mail.internet 250 6,186 ( 29.0%) 10 (  0.0%) 103,517 ( 36.9%) 258 (  0.1%) 

MimeBodyPart.updateHeaders(MimePart) javax.mail.internet 750 5,533 ( 26.0%) 72 (  0.3%) 94,878 ( 33.8%) 1,004 (  0.4%) 

SMTPTransport.connect() com.sun.mail.smtp 250 4,588 ( 21.5%) 2 (  0.0%) 37,892 ( 13.5%) 0 (  0.0%) 

Service.connect() javax.mail 250 4,586 ( 21.5%) 1 (  0.0%) 37,892 ( 13.5%) 0 (  0.0%) 

Service.connect(String, String, String) javax.mail 250 4,585 ( 21.5%) 1 (  0.0%) 37,892 ( 13.5%) 0 (  0.0%) 

SFASmtpClient.sendMessage() method has the most cumulative time.  This is expected because this method is the entry point for application code 
to JavaMail.  SFASmtpClient.sendMessage() is responsible for building and sending email message and in the process calls on several other 
javax.mail.internet methods.  Thus, aggregately, has the most time. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 42

Top 10 methods with most method time: 

Class Package Calls 
Cumulative 
Time Method Time 

Cumulative 
Objects 

Method 
Objects 

BufferedReader.<init>(Reader, int) java.io 257 1,427 (  6.7%) 1,426 (  6.7%) 257 (  0.1%) 257 (  0.1%) 

String.indexOf(int) java.lang 179,863 1,705 (  8.0%) 1,069 (  5.0%) 0 (  0.0%) 0 (  0.0%) 

String.charAt(int) java.lang 356,152 1,028 (  4.8%) 1,028 (  4.8%) 0 (  0.0%) 0 (  0.0%) 

String.indexOf(int, int) java.lang 181,570 640 (  3.0%) 640 (  3.0%) 0 (  0.0%) 0 (  0.0%) 

StringBuffer.expandCapacity(int) java.lang 17,499 659 (  3.1%) 614 (  2.9%) 17,499 (  6.2%) 17,499 (  6.2%) 

String.equalsIgnoreCase(String) java.lang 184,535 711 (  3.3%) 570 (  2.7%) 0 (  0.0%) 0 (  0.0%) 

HeaderTokenizer.getNext() javax.mail.internet 16,000 1,596 (  7.5%) 547 (  2.6%) 33,250 ( 11.8%) 20,750 (  7.4%) 

String.<init>(char[], int, int) java.lang 8,129 528 (  2.5%) 505 (  2.4%) 8,129 (  2.9%) 8,129 (  2.9%) 

InternetHeaders.getHeader(String) javax.mail.internet 3,750 1,205 (  5.7%) 502 (  2.4%) 12,750 (  4.5%) 4,500 (  1.6%) 

InternetAddress.indexOfAny(String, String, 
int) javax.mail.internet 5,250 1,491 (  7.0%) 435 (  2.0%) 0 (  0.0%) 0 (  0.0%) 

The methods shown above are mostly called upon by the Email framework through JavaMail.  These classes are essential in email constructing 
and sending processes.  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 43

Top 10 methods with most cumulative objects: 

Name Package Calls Cumulative Time Method Time 
Cumulative 
Objects 

Method 
Objects 

SFASmtpClient.sendMessage(String, String, 
String, String) gov.ed.sfa.ita.email 250 21,297 (100.0%) 19 (  0.1%) 280,843 (100.0%) 776 (  0.3%) 

SFASmtpClient.buildSession() gov.ed.sfa.ita.email 250 18,744 ( 88.0%) 43 (  0.2%) 243,915 ( 86.9%) 600 (  0.2%) 

Transport.send(Message) javax.mail 250 14,322 ( 67.3%) 4 (  0.0%) 176,874 ( 63.0%) 0 (  0.0%) 

MimeMessage.updateHeaders() javax.mail.internet 250 6,186 ( 29.0%) 10 (  0.0%) 103,517 ( 36.9%) 258 (  0.1%) 

MimeMessage.saveChanges() javax.mail.internet 250 6,188 ( 29.1%) 3 (  0.0%) 103,517 ( 36.9%) 0 (  0.0%) 

MimeBodyPart.updateHeaders(MimePart) javax.mail.internet 750 5,533 ( 26.0%) 72 (  0.3%) 94,878 ( 33.8%) 1,004 (  0.4%) 

Transport.send0(Message, Address[]) javax.mail 250 7,466 ( 35.1%) 34 (  0.2%) 68,357 ( 24.3%) 2,003 (  0.7%) 

ContentType.<init>(String) javax.mail.internet 3,250 1,746 (  8.2%) 73 (  0.3%) 48,750 ( 17.4%) 6,500 (  2.3%) 

Service.connect(String, int, String, String) javax.mail 250 4,584 ( 21.5%) 26 (  0.1%) 37,892 ( 13.5%) 1,009 (  0.4%) 

SMTPTransport.connect() com.sun.mail.smtp 250 4,588 ( 21.5%) 2 (  0.0%) 37,892 ( 13.5%) 0 (  0.0%) 

As indicated in the matrix, SFASmtpClient.sendMessage() method has the most cumulative objects.  The reason is the same as in cumulative 
method time.  SFASmtpClient.sendMessage() initiates the calls to other methods and aggregately has the most objects. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 44

Top 10 methods with most method objects: 

Name Package Calls Cumulative Time Method Time Cumulative Objects Method Objects 

String.substring(int, int) java.lang 26,888 473 (  2.2%) 412 (  1.9%) 24,738 (  8.8%) 24,738 (  8.8%) 

StringBuffer.<init>(int) java.lang 21,139 98 (  0.5%) 98 (  0.5%) 21,139 (  7.5%) 21,139 (  7.5%) 

HeaderTokenizer.getNext() javax.mail.internet 16,000 1,596 (  7.5%) 547 (  2.6%) 33,250 ( 11.8%) 20,750 (  7.4%) 

StringBuffer.toString() java.lang 20,394 544 (  2.6%) 394 (  1.9%) 20,394 (  7.3%) 20,394 (  7.3%) 

StringBuffer.expandCapacity(int) java.lang 17,499 659 (  3.1%) 614 (  2.9%) 17,499 (  6.2%) 17,499 (  6.2%) 

InternetHeaders.<init>() javax.mail.internet 750 557 (  2.6%) 349 (  1.6%) 18,861 (  6.7%) 16,542 (  5.9%) 

String.<init>(char[], int, int) java.lang 8,129 528 (  2.5%) 505 (  2.4%) 8,129 (  2.9%) 8,129 (  2.9%) 

Vector.<init>(int, int) java.util 8,020 318 (  1.5%) 274 (  1.3%) 8,020 (  2.9%) 8,020 (  2.9%) 

Object.clone() java.lang 7,929 46 (  0.2%) 46 (  0.2%) 7,929 (  2.8%) 7,929 (  2.8%) 

ParameterList.<init>(String) javax.mail.internet 3,750 498 (  2.3%) 57 (  0.3%) 18,250 (  6.5%) 7,500 (  2.7%) 

As shown in the matrix, objects are mostly coming from java.lang, java.util and javax.mail.internet packages. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 45

3.2.6 General Performance Metrics 
RCS Email framework is tested on Windows 2000 platform and JDK 1.3 running on PIII 800 MHz with 
256M RAM machine.  The test is run for an minute to gather the number of calls to 
SFASmtpClient.sendMessage() method.  Two sets of numbers are collected: email with attachment (300K) 
and email without attachment.   

Operation Average Time Calls Per Second 

Email with attachment 0.092 s 10.8 

Email without attachment 0.065 s 15.3 

 

The five matrices collected above show that the calls to JavaMail methods within 
SFASmtpClient.sendMessage() method are necessary.  The RCS email framework provides easy access to 
JavaMail for developers.   Majority of the time is spent on JavaMail activities that are required for a 
proper-formed email message and there is a performance drop when attachment is included in an email 
message. 

3.3 User Guide 

3.3.1 Introduction 
3.3.1.1 Purpose 

This section provides a high-level summary, feature list, and usage of the Integrated Technical 
Architecture (ITA) standard Email Framework.  The Email Framework is part of a suite of Reusable 
Common Services (RCS) provided to SFA applications by the ITA initiative.  The goal of the ITA 
initiative is to promote code reuse, standardization, and application of best practices across all SFA 
system development projects. 

3.3.1.2 Intended audience 

This section is intended for ITA and SFA application programmers who need to understand the Java 
Email framework in order to use this framework in their application. 

3.3.1.3 Background 

In the past SFA applications have used different methods to achieve Java Mail Messaging. They have 
used previous versions of the Java Mail API and also propriety designs that have included retrieving 
messages out of a oracle database and using Solaris shell scripts that use sendmail. Due to application 
support and availability issues, it’s become very obvious that the ITA needs to specify a standard 
email API that is well documented and well tested. 

3.3.1.4 Scope 

This section covers only components that directly compose the Email framework.  Consult the Sun 
Java website (http://www.javasoft.com) or applicable Java programming guides for more 
information on topics outside of the Email framework.   



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 46

3.3.1.5 Assumptions 

It is assumed that this framework will function in a J2EE application server environment.  As the 
current production server for SFA is IBM WebSphere 3.5.3, the framework will be compiled using its 
required JDK version 1.2.2.  It should also work with the current JavaServer Pages (1.1), Java Servlet 
(2.2), Java Messaging Service (1.0.1), and Java Database Connectivity (2.0) specifications for this 
server.   

3.3.2 Description 
3.3.2.1 Overview 

Email functionality is an important system requirement in areas such as E commerce and customer 
care. In most cases, business applications use email to alert their customers of a security change or a 
News broadcast. The ITA Email framework is a wrapper class that simplifies the interface to Sun 
Microsystems’s JavaMail. Sun Microsystems JavaMail API 1.2 provides a standard interface for Java 
Application programs to send emails to a SMTP Mail server.  The JavaMail API is in turn built upon 
the Java Activation Framework (JAF), allowing complex message submitting and retrieving through 
different protocols. These API’s provides a platform independent and protocol independent 
framework to build Java technology based mail and messaging applications. 

The goal of the ITA Email Framework is to provide a simple yet robust interface to JavaMail 1.2 that 
could easily be utilized by any SFA development team that are building applications in Java that need 
to run in a Java Application Server. In the past SFA Application Operations Groups have reported 
limited success in tracing and debugging Email problems. It is very important that the ITA Email 
Framework be reliable and also very easy to debug if problems occur.   To this end the ITA logging 
and Exception Handling Framework will be used to document any errors that the Email Framework 
encounters.  

The Email framework will also standardize all SFA applications on a single interface to email. As 
specified before, many different implementations of email have occurred in previous projects and it is 
important that a supportable, maintainable standard email interface be used across many projects.   

3.3.2.2 Features 

The ITA Email Framework has a single class called SFASmtpClient.  This bean provides simplified 
interfaces to the Sun Microsystems JavaMail API and provides public methods to create and 
manipulate email via Java programs.  

In particular the SFASmtpClient bean provides the following features. 

• Establish a real-time JavaMail Session with a SMTP Server 
• Ability to set the subject, FromAddress, ToAddress, FileAttachment, ReplyToAddress, 

Sentdate and TextContent of current email.  
• Ability to set multiple email addresses within the ToAddress, From Address and 

ReplytoAddresses 
• Ability to get and set which SMTP Server the Email Framework will attach to. 
• Ability to verify email parameters has meet minimum standards for delivery. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 47

3.3.3 Installation  
3.3.3.1 Software requirements 

The Email Framework requires that a Simple Mail Transport Protocol Server (SMTP) is available so 
that emails generated by the client application may route mail to it. Currently ITA uses sendmail that 
is available on Sun Solaris or HP-UX as the standard SMTP server. 

The Email framework uses JavaMail 1.2 to build and route email. The JavaMail API’s are provided 
via the following Jar files. These jar files must be within the classpath. 

 
Activation.jar 
Mail.jar 
MailApi.jar 
rcs_email_v1.5.jar 
Pop3.jar 
Smtp.jar 

 
The Email Framework uses the ITA Logging Framework, which requires the following Jar files to be 
within the classpath. 

 
Jakarta-oro-2.0.1 
Jdom-B6 
Protomatter-1-1-5.jar 
Utility.jar 
Xerces.jar 
Xml.jar 
rcs_logging_v1.5.jar 

 
The Email Framework uses the ITA Exception Handling Framework, which requires the following Jar 
files to be within the classpath. 

 
rcs_exception_v1.5.jar 

 
3.3.3.2 Usage 

When using the Email Framework the Java developer would perform the following sequences to 
setup an email.  

Task Type of Variable or Method call 
Specify a from Address variable and 
initialize it to a email address 

String or IA* 

Specify a to Address variable and 
initialize it to a email address(s) 

String, String[] or  IA[]* 

Specify a reply To Address variable and 
initialize it to a email address(s) 

String, String[] or IA[]* 

Specify a subject variable and initialize 
it to the subject text 

String 

Build an instance of SFASmtpClient SFASmtpClient() 
Set the Text Content by calling the 
public method setTextContent() 

SetTextContent(String text) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 48

Task Type of Variable or Method call 
Set the fileAttachments (if needed) by 
calling the public method 
setFileAttachments() 

SetFileAttachments(String fileloc) 
SetFileAttachments(String[filelocA, 
filelocB]) 

Send the Email by calling 
sendMessage() within a try loop 
catching for SFAException 

SendMessage(from,to,reply,subj) 

 

*IA represents object type javax.mail.internet.InternetAddress 

Beware that the Email Framework requires that the From, To and ReplyTo arguments in 
sendMessage() have a valid address for it to successfully send an email. If these parameters are not set 
then a SFAException exception will be thrown.  Another requirement is that all emails must follow 
the Email address specifications detailed in RFC822. If an email is found to be outside of the RFC822 
specifications then an SFAException is thrown. (See Reference Section for link) 

3.3.4 Configuration 
Due to the fact that the Email Framework uses the SFA Logging and Exception handling framework then 
the needed logging and exception handling configuration files need to be in place to allow the Email 
Framework to function properly.   

The logging framework uses a file called rcs.xml. This file is configured upon start of the WebSphere 
Application server and is available to all frameworks if the proper command line arguments are supplied 
to the Application Server. Each application shares the rcs.xml file with the common services used within 
that application. The location of the rcs.xml is specified via the command line argument 
Syslog.config.xml.  Reference the ITA Reusable Common Services Logging User Guide for any questions. 

The exception-handling framework uses an error message properties file that is located in the properties 
directory. The error messages appearing in the log file correspond to the code found in the properties file. 
Reference the ITA Reusable Common Services Exception Handling User Guide for any questions. 

 

3.3.5 Usage Scenarios 
Two examples are provided to illustrate the Email Framework.  

 
The first example referenced in section 5.1 illustrates a Servlet example. The Servlet receives the Email 
addresses (toaddr, fromaddr, reply) dynamically through a web page. (Not shown) The servlet 
retrieves these addresses via the request object and the getParameter() public method. Once the 
addresses are known, a new Email object is built via the SFASmtpClient constructor. The text content 
of the Email is established via the SFASmtpClient public method setTextContent(). If a file attachment 
is needed then a public method called setFileAttachments() is available to set a File Attachment 
location that the file is retrieved from. Finally the public method sendMessage is called to send the 
email. sendMessage() builds the session with javamail and the SMTP server, checks for email address 
syntax, and sends the email. If a send message exception or address exception occurs, sendMessage() 
will pass back a SFAException. 
 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 49

3.3.5.1 Servlet Example 

import gov.ed.sfa.ita.email.*; 
import java.io.*; 
import javax.servlet.*; 
public class EmailDriver extends 
javax.servlet.http.HttpServlet { 
public void doGet(javax.servlet.http.HttpServletRequest 
request, javax.servlet.http.HttpServletResponse response) 
throws javax.servlet.ServletException, java.io.IOException { 
performTask(request, response); 
} 
public void doPost(javax.servlet.http.HttpServletRequest 
request, javax.servlet.http.HttpServletResponse response) 
throws javax.servlet.ServletException, java.io.IOException { 
performTask(request, response); 
} 
public void 
performTask(javax.servlet.http.HttpServletRequest request, 
javax.servlet.http.HttpServletResponse response) { 
PrintWriter out = null; 
SFASmtpClient emailS=null; 
Syslog.log(EmailDriver.class, "RCS_EMAIL",  "performTask(): 
Getting Parameters", null, Syslog.INFO); 
//Get Parameters from a http session 
String toaddr= request.getParameter("Toaddress"); 
String fromaddr = request.getParameter("Fromaddress"); 
String reply = request.getParameter("ReplyToAddress"); 
String subj = request.getParameter("Subject"); 
String message = request.getParameter("Message"); 
//Build Email  Session 
emailS = new SFASmtpClient(); 

//SET TEXT CONTENT 

emailS.setTextContent(message); 
//Set File Attachment (If needed) 
emailS.setFileAttachments("/tmp/Test_attach.doc"); 
try 
{ 

//SEND THE EMAIL  

emailS.sendMessage(fromaddr,toaddr,reply,subj); 
out = new PrintWriter(response.getOutputStream()); 
out.println("<HTML><BODY>"); 
out.println("Email Sent!"); 
out.println("</BODY></HTML>"); 
out.close(); 
} 
catch(SFAException s1) 
{ 
// route to error page 
} 
} 
} 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 50

The second example is a simple class example that builds the email within the main function and does 
not receive the Email addresses dynamically.  The simple class example still shows building an Email 
instance, setting the different required fields (From address, To address and reply) and setting the 
File Attachment location (If needed). The public method sendMessage() is called to interface with 
javaMail and route the email. The try loop that surrounds the sendMessage() function catches 
SFAException’s. 
 

3.3.5.2 Simple class Example 

import javax.mail.internet.*; 
import java.util.*; 
public class SMTPTester { 
public SMTPTester() { 
super(); 
} 
public static void main(java.lang.String[] args) { 
// First set up a ‘From’, ‘To’ and ‘Reply To’ address 
variable 
String sFrom = new String("root@vdc.com"); 
String sTo = new String("to@vdc.com"); 
String sRta = new String("root@vdc.com"); 

// SET UP A SUBJECT variable 

String sSubj = 
new String("Test for the String Interface in the Email 
Framework"); 

//BUILD A EMAIL INSTANCE 

SFASmtpClient emailS = new SFASmtpClient(); 

//SET THE EMAIL TEXT CONTENT 

emailS.setTextContent("This is the test for the String 
interface"); 

//SET AN ATTACHEDFILE IF NEEDED 

emailS.setFileAttachments(“c:\temp\file.doc”); 
try { 

//SEND THE MESSAGE TO JAVAMAIL AND SIT BACK AND RELAX 

emailS.sendMessage(sFrom, sTo, sRta, sSubj); 
} catch (gov.ed.sfa.ita.exception.SFAException e2) { 

//THE ONLY EXCEPTION  THE DEVELOPER HAS TO WORRY ABOUT IS 
SFAEXCEPTION 

System.out.println("You have caught an exception"); 
//route to error page 
} 
} 

 

3.3.6 Sample Code 
The ITA RCS Email Framework includes the two classes specified in section 5. The classes are 
SMTPTester and EmailDriver. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 51

3.3.7 Resources 
Java Activation Framework JavaDocs online  

 http://java.sun.com/products/javabeans/glasgow/javadocs 

JavaMail 1.2 JavaDocs Online 

http://www.javasoft.com/products/javamail/1.2/docs/javadocs/index.html 

RFC-822 Reference 

http://www.w3.org/Protocols/rfc822 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 52

 

4 RCS – Exception Handling Framework 
The exception handling framework will provide a simple yet useful framework that can easily be utilized 
by any SFA development team building applications in Java, or more specifically WebSphere (although 
there is nothing in this package that ties it to WebSphere).  The three things this framework is intended to 
provide is consistency in approach, standardization of error messages, and out-of-the-box integration 
with the logging framework. 

Error handling is an important piece of any development effort, and a standardized framework should go 
a long way towards easing this coding burden on application programmers. 

4.1 Testing Conditions & Results 

4.1.1 Automated Testing 
Condition 
Number 

Detailed Condition Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

1 constructor with no 
arguments 

testSFAException testSFAException SFAException SFAException() SFAException 
object is created 

  

2 constructor with a 
string argument 

testSFAException testSFAException SFAException SFAException 
(String message) 

SFAException 
object is created, 
setting the 
message field to 
"this is a test 
message" and 
value is retrieved 

  

3 set and get of 
addlInfo field 

testSFAException testAddlInfo SFAException setAddlInfo 
getAddlInfo 

the string: "this is 
addlInfo" is set 
and retrieved 

  

4 set and get of 
arguments field 

testSFAException testArguments SFAException setArguments 
getArguments 

object array of 2 
strings: 
"Argument One" 
and "Argument 
Two" is set and 
retrieved 

  

5 set and get of 
className field 

testSFAException testClassName SFAException setClassName 
getClassName 

the string 
"className" is 
set and retrieved 

  

6 set and get of 
errorCode field 

testSFAException testErrorCode SFAException setErrorCode 
getErrorCode 

the long integer 
999 is set and 
retrieved 

  

7 set and get of 
message field 

testSFAException testMessage SFAException setMessage 
getMessage 

the string "this is 
the error 
message text" is 
set and retrieved 

  

8 set and get of 
methodName field 

testSFAException testMethodName SFAException setMethodName 
getMethodName 

the string 
"methodName" 
is set and 
retrieved 

  

9 set and get of 
origException field 

testSFAException testOrigException SFAException setOrigException 
getOrigException 

an Exception 
object is set and 
retrieved 

  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 53

Condition 
Number 

Detailed Condition Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

10 get reference to 
SFAExceptionFacto
ry instance 

testSFAExceptionF
actory 

testGetInstance SFAExceptionF
actory 

getInstance a reference to 
the 
SFAExceptionFa
ctory is obtained 

  

11 get a SFAException 
from the 
SFAExceptionFacto
ry 

testSFAExceptionF
actory 

testCreateExcepti
on 

SFAExceptionF
actory 

createException a new 
SFAException is 
obtained 

  

12 get the message for 
an SFAException 
from the 
SFAExceptionFacto
ry 

testSFAExceptionF
actory 

testGetMessageL
ookup 

SFAExceptionF
actory 

getMessage the correct string 
representing the 
error text for this 
exception is 
obtained 

  

13 get the default 
message for an 
SFAException from 
the 
SFAExceptionFacto
ry 

testSFAExceptionF
actory 

testGetMessageD
efault 

SFAExceptionF
actory 

getMessage the default string  
for an SFA 
exception is 
obtained 

  

14 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
SFAException 

testSFAExceptionF
actory 

testGetNestedErr
orSFAException 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
SFAException is 
returned 

  

15 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
RemoteException 

testSFAExceptionF
actory 

testGetNestedErr
orRemoteExceptio
n 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
RemoteExceptio
n is returned 

  

16 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
InvocationTargetEx
ception 

testSFAExceptionF
actory 

testGetNestedErr
orInvocationTarge
tException 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
InvocationTarget
Exception is 
returned 

  

17 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
ServerCloneExcepti
on 

testSFAExceptionF
actory 

testGetNestedErr
orServerCloneExc
eption 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
ServerCloneExc
eption is 
returned 

  

18 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
ExceptionInInitialize
rError 

testSFAExceptionF
actory 

testGetNestedErr
orExceptionInInitia
lizerError 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
ExceptionInInitial
izerError is 
returned 

  

19 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
SQLWarning 

testSFAExceptionF
actory 

testGetNestedErr
orSQLWarning 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
SQLWarning is 
returned 

  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 54

Condition 
Number 

Detailed Condition Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

20 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
SQLException 

testSFAExceptionF
actory 

testGetNestedErr
orSQLException 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
SQLException is 
returned 

  

21 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
WriteAbortedExcept
ion 

testSFAExceptionF
actory 

testGetNestedErr
orWriteAbortedEx
ception 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
WriteAbortedExc
eption is 
returned 

  

22 get the nested error 
for an 
SFAException 
where the nested 
errror is of type 
ServletException 

testSFAExceptionF
actory 

testGetNestedErr
orServletExceptio
n 

SFAExceptionF
actory 

getNestedError the nested 
exception for the 
ServletException 
is returned 

  

 

4.2 Performance Analysis 

4.2.1 Summary 
This section provides a summary, configuration, data and analysis collected from the performance test of 
the SFA Exception Handling Reusable Common Service.  The purpose of the test and the accompanying 
document is to identify performance issues and considerations while providing an overview of the 
architecture and use of the component.   

The review of the ITA Exception Handling component found no performance issues with the design or 
the code.  SFAException extends the capabilities of the base class java.lang.Exception considerably.  It 
gives the application developer the added function of external logging, nested exceptions, and extended 
and customizable error codes.  However, this functionality does come at a cost.  The SFAException does 
not perform as fast as java.lang.Exception, but it is not meant to be a substitute, but an extension of the 
existing functionality.   

The performance of some additional functions is based on the components that SFAException depends on 
for these tasks.  The RCS Logging framework can be used to perform the logging of the extended 
information within an SFAException.  The performance of that component is beyond the scope of this 
section and is included in a separate performance test report.  Likewise, the additional information can be 
included with an SFAException.  However, this proves to have only a small effect on the performance of 
the component because Java passes values by reference. 

4.2.2 Test Environment 
ITA Exception Handling was run through a performance testing harness to determine the relative 
resources required for the different parts of the exception-handling framework. These basic operations are 
the creation, initialization and throwing of the SFAException.  The harness tested each of the above 
operations independently and as a whole. The test was run on a Compaq Desktop EN, 733 Mhz Pentium 
III, with JDK 1.2.2 on Windows NT 4.0. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 55

4.2.3 Test Configuration 
The configuration of the testing harness is straightforward.  Two static variables that can be set at the 
command line control which sections of the code to run.  This allows testing the two steps of the exception 
handling process that are supplied explicitly within SFAException, exception initialization and throwing.  
This allows us to identify bottlenecks and trouble spots.  Creating the exception is taken as a given for this 
test.  There is no possibility of initializing an Exception, much less throw one, without the SFAException 
object; therefore it must be a consistent portion of the scenario.  Specifying an argument that is not create 
or throw can test for SFAException creation. 

The test harness is as follows: 

import gov.ed.sfa.ita.exception.*; 
import java.io.*; 
import java.util.*; 
 
public class SFAExceptionMetrics 
{ 
 static boolean doCreate = false; 
 static boolean doThrow  = false; 
 
        public SFAExceptionMetrics()  { 
        } 
         
         
 public static void main(String[] argv) { 
               int i = 0; 

if (argv.length < 1) { 
   doCreate = true; 
   doThrow  = true; 
               } 
  else { 
   for (int i = 0; i < argv.length ; i++) { 
    String temp = argv[i]; 
    if (temp.equalsIgnoreCase("create")) 
     doCreate = true; 
    if (temp.equalsIgnoreCase("throw")) 
     doThrow  = true; 
   } 
               } 
        } 
 
        public static void metricsSFA() { 
               Date dtStart = new Date(); 
               for(int i=0; i<10000; i++) { 
                       try { 
                            SFAExceptionFactory fac = 
SFAExceptionFactory.getInstance(); 
                            SFAException ex = new 
SFAException(); 
                            if (doCreate) ex = 
                            fac.createException( 
                                       SFAException.class, 
                                       
SFAException.EMA_ADDRESS_EXCEPTION, 
                                       null, 
                                       null, 
                                       "metricsSFA", 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 56

                                       "Thrown", 
                                       null); 
                            if (doThrow) throw ex; 
                       } 
                       catch (SFAException e) { 
                       } 
               }         

Date dtStop  = new Date(); 
System.out.println("Trial Time (ms) : " +  

(dtStop.getTime() - dtStart.getTime())); 
        } 
} 

 

4.2.4 Test Scenario 
The testing scenario was the creation, initialization, and throwing of a generic SFAException.  There was 
no handling of the exception, nor was there extensive initialization.  This test was designed to pinpoint 
performance issues within the SFAException and SFAExceptionFactory classes.    

4.2.5 Analysis 
The analysis consists of three parts: 

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code to 
identify loitering object and over-allocation of objects.   

2. Garbage Collection: The garbage collector is a process that runs on a low priority thread.  When 
the JVM attempts to allocate an object but the Java heap is full, the JVM calls the garbage 
collector.  The garbage collector frees memory using some algorithm to remove unused objects.  
Examining the activities of the garbage collection will give a good indication of the performance 
impact of the garbage collector on the application. 

3. Code Efficiency: To identify any performance bottleneck due to inefficient code algorithms 

4.2.5.1 Memory (Heap) Usage 

The performance test utilized JProbe Profiler’s Memory Debugger to identify the sections of 
SFAException and SFAExceptionFactory that might be causing loitering objects.  The following graphic is 
the Runtime Heap Summary, which is a pictorial rendering of the Java heap.  Through analysis of the 
heap, we can find inconsistencies between predicted and expected memory use behavior and abnormal 
memory use behavior. 

The Heap Usage Chart below plots the size of the Java heap at selected time intervals. The chart helps to 
visualize memory use in the Java heap. It displays the available size of the Java heap (in pink) and the 
used memory (in blue) over time. 

The first part of the chart indicates a rounded hump.  This rounded hump indicates the initialization of 
the test harness in memory.  This is expected behavior, as the framework instantiates a set of objects to set 
up the test and then disposes of them.  At this time the heap size (in pink) is also increased to handle the 
memory requirements of the test.  This is normal behavior for the test harness and represents behavior for 
the harness, not for SFAException or SFAExceptionFactory.   

The second part of the chart indicates a series of spikes.  Steep spikes in the Heap Usage Chart represent 
temporary objects being allocated and garbage collected. If the level of the troughs becomes higher over 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 57

time, then not all the temporary objects are garbage collected.  As can be seen the troughs remain steady 
over time, and while multiple objects are being created and destroyed, there do not appear to be any 
lingering objects. 

 

 

 

 

4.2.5.2 Garbage Collections 

The Garbage Monitor was used to identify the classes that are responsible for large allocations of short-
lived objects. It shows the cumulative results of successive garbage collections during the session. The 
Garbage Monitor shows only the top ten classes, representing the classes with the most instances garbage 
collected. During the session, the top ten classes will change as the number of garbage-collected objects 
accumulates.  The list below is the final top ten, displaying cumulative objects created at the end of 
program execution. 

Each row identifies the class by package name, if any, and class name. The next columns state, in order, 
the number of garbage collected objects (GC’ed column) for the class, the number of instances remaining 
in the heap (Alive column), and the method that allocated the instances of the class (Allocated At 
column).  The same class can appear more than once because more than one method allocated instances of 
the class. 

The chart below does not show any unexpected activity, or activity that would indicate a performance 
problem.  Most of the objects created are strings, string buffers, or character arrays.  These numbers are in 
line with the framework requirements and expected behavior as it formats a large number of 
SFAException messages and assigns them to the thrown SFAException. 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 58

Package Class GC’ed Alive Allocated At 

 char[] 150,925 74 SFAExceptionJProbe.main

java.lang StringBuffer 80,441 39 SFAExceptionJProbe.main

java.lang String 70,546 37 SFAExceptionJProbe.main

 Object[] 30,511 15 Throwable.fillInStackTrace

 int[] 30,510 16 Throwable.fillInStackTrace

 Object[] 20,062 10 SFAExceptionJProbe.main

 int[] 20,062 10 SFAExceptionJProbe.main

java.util Date 10,160 7 SFAExceptionJProbe.main

gov.ed.sfa.ita.exception SFAException 10,159 5 SFAExceptionJProbe.main

gov.ed.sfa.ita.exception SFAException 10,159 5 Class.newInstance()

 

4.2.5.3 Code Efficiency Metrics 

There are nine efficiency metrics that can be collected in JProbe — five basic metrics and four compound 
metrics. The basic metrics include Number of Calls, Method Time, Cumulative Time, Method Object 
Count, and Cumulative Object Count. The compound metrics are averages per number of calls, including 
Average Method Time, Average Cumulative Time, Average Method Object Count, and Average 
Cumulative Object Count. Time is measured as elapsed time.  

The following list defines the nine performance metrics: 

• Number of Calls - The number of times the method was invoked. 
• Method Time - The amount of time spent executing the method, excluding time spent in its 

descendants. 
• Cumulative Time - The total amount of time spent executing the method, including time spent in its 

descendants but excluding time spent in recursive calls to descendants. 
• Method Object Count - The number of objects created during the method’s execution, excluding those 

created by its descendants. 
• Cumulative Object Count - The total number of objects created during the method’s execution, 

including those created by its descendants. 
• Average Method Time - Method Time divided by Number of Calls.  
• Average Cumulative Time - Cumulative Time divided by Number of Calls. 
• Average Method Object - Count Method Object Count divided by Number of Calls. 
 

The charts on the following pages serve to document the performance characteristics of the logging 
framework with several lists: methods with the most calls, methods with the most time spent in them, and 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 59

methods with the most created objects.  These measures are basic indicators of processing resource 
utilization.  The lists can be reviewed for unexpected activity or optimization opportunities.



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 60

Methods with the most calls:  

 

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

java.utilDate.getTime() 20,331 18 18 0 0Date.java 

java.utilDate.<init>() 10,166 53 53 0 0Date.java 

gov.ed.sfa.ita.exceptionSFAException.<init>() 10,164 2,451 2,451 20,328 20,328SFAException.java 

gov.ed.sfa.ita.exception

SFAExceptionFactory.createException 
(Class, long, Object[], Exception,  
String, String, String) 10,164 54,682 54,682 426,958 426,958SFAExceptionFactory.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.getInstance() 10,164 399 399 2,076 2,076SFAExceptionFactory.java 

java.lang
ClassLoader.checkPackageAccess 
(Class, ProtectionDomain) 10 0 0 0 0ClassLoader.java 

java.langClassLoader.loadClassInternal(String) 8 207 207 59 59ClassLoader.java 

 .Root. 1 202,151 1 485,997 0  

java.langClass.forName(String) 1 0 0 0 0Class.java 

java.langString.equalsIgnoreCase(String) 1 2 2 0 0String.java 

 .Signal dispatcher. 1 0 0 0 0  

 .Reference Handler. 1 69,753 69,753 0 0  

 .Finalizer. 1 69,752 69,752 0 0  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 61

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

 .SymcJIT-LazyCompilation-PA. 1 0 0 0 0  

 .main. 1 62,646 2,430 485,997 16,142  

 .SymcJIT-LazyCompilation-0. 1 0 0 0 0  

 SFAExceptionJProbe.class$(String) 1 0 0 2 2  

 SFAExceptionJProbe.main(String[]) 1 60,216 4 469,855 22  

 SFAExceptionJProbe.metricsSFA() 1 60,003 2,396 469,774 20,344  

java.utilDate.<clinit>() 1 2 2 66 66Date.java 

java.utilDate.<init>(long) 1 0 0 0 0Date.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.<clinit>() 1 0 0 0 0SFAExceptionFactory.java 

  .Thread-0. 1 0 0 0 0  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 62

Methods with the most total time:  
(includes time spent in sub-methods) 

 

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

 .Root. 1 202,151 1 485,997 0  

 .Reference Handler. 1 69,753 69,753 0 0  

 .Finalizer. 1 69,752 69,752 0 0  

 .main. 1 62,646 2,430 485,997 16,142  

 SFAExceptionJProbe.main(String[]) 1 60,216 4 469,855 22  

 SFAExceptionJProbe.metricsSFA() 1 60,003 2,396 469,774 20,344  

gov.ed.sfa.ita.exception

SFAExceptionFactory.createException 
(Class, long, Object[], Exception,  
String, String, String) 10,164 54,682 54,682 426,958 426,958SFAExceptionFactory.java 

gov.ed.sfa.ita.exceptionSFAException.<init>() 10,164 2,451 2,451 20,328 20,328SFAException.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.getInstance() 10,164 399 399 2,076 2,076SFAExceptionFactory.java 

java.langClassLoader.loadClassInternal(String) 8 207 207 59 59ClassLoader.java 

java.utilDate.<init>() 10,166 53 53 0 0Date.java 

java.utilDate.getTime() 20,331 18 18 0 0Date.java 

java.langString.equalsIgnoreCase(String) 1 2 2 0 0String.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 63

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

java.utilDate.<clinit>() 1 2 2 66 66Date.java 

java.lang
ClassLoader.checkPackageAccess 
(Class, ProtectionDomain) 10 0 0 0 0ClassLoader.java 

java.langClass.forName(String) 1 0 0 0 0Class.java 

 .Signal dispatcher. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-PA. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-0. 1 0 0 0 0  

 SFAExceptionJProbe.class$(String) 1 0 0 2 2  

java.utilDate.<init>(long) 1 0 0 0 0Date.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.<clinit>() 1 0 0 0 0SFAExceptionFactory.java 

  .Thread-0. 1 0 0 0 0  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 64

Methods with the most method time: 

 

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

 .Reference Handler. 1 69,753 69,753 0 0  

 .Finalizer. 1 69,752 69,752 0 0  

gov.ed.sfa.ita.exception

SFAExceptionFactory.createException 
(Class, long, Object[], Exception,  
String, String, String) 10,164 54,682 54,682 426,958 426,958SFAExceptionFactory.java 

gov.ed.sfa.ita.exceptionSFAException.<init>() 10,164 2,451 2,451 20,328 20,328SFAException.java 

 .main. 1 62,646 2,430 485,997 16,142  

 SFAExceptionJProbe.metricsSFA() 1 60,003 2,396 469,774 20,344  

gov.ed.sfa.ita.exceptionSFAExceptionFactory.getInstance() 10,164 399 399 2,076 2,076SFAExceptionFactory.java 

java.langClassLoader.loadClassInternal(String) 8 207 207 59 59ClassLoader.java 

java.utilDate.<init>() 10,166 53 53 0 0Date.java 

java.utilDate.getTime() 20,331 18 18 0 0Date.java 

 SFAExceptionJProbe.main(String[]) 1 60,216 4 469,855 22  

java.langString.equalsIgnoreCase(String) 1 2 2 0 0String.java 

java.utilDate.<clinit>() 1 2 2 66 66Date.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 65

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

 .Root. 1 202,151 1 485,997 0  

java.lang
ClassLoader.checkPackageAccess 
(Class, ProtectionDomain) 10 0 0 0 0ClassLoader.java 

java.langClass.forName(String) 1 0 0 0 0Class.java 

 .Signal dispatcher. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-PA. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-0. 1 0 0 0 0  

 SFAExceptionJProbe.class$(String) 1 0 0 2 2  

java.utilDate.<init>(long) 1 0 0 0 0Date.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.<clinit>() 1 0 0 0 0SFAExceptionFactory.java 

  .Thread-0. 1 0 0 0 0  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 66

Methods with the most total objects: 
(includes objects created in sub-methods) 

 

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

 .main. 1 62,646 2,430 485,997 16,142  

 .Root. 1 202,151 1 485,997 0  

 SFAExceptionJProbe.main(String[]) 1 60,216 4 469,855 22  

 SFAExceptionJProbe.metricsSFA() 1 60,003 2,396 469,774 20,344  

gov.ed.sfa.ita.exception

SFAExceptionFactory.createException 
(Class, long, Object[], Exception,  
String, String, String) 10,164 54,682 54,682 426,958 426,958SFAExceptionFactory.java 

gov.ed.sfa.ita.exceptionSFAException.<init>() 10,164 2,451 2,451 20,328 20,328SFAException.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.getInstance() 10,164 399 399 2,076 2,076SFAExceptionFactory.java 

java.utilDate.<clinit>() 1 2 2 66 66Date.java 

java.langClassLoader.loadClassInternal(String) 8 207 207 59 59ClassLoader.java 

 SFAExceptionJProbe.class$(String) 1 0 0 2 2  

 .Reference Handler. 1 69,753 69,753 0 0  

 .Finalizer. 1 69,752 69,752 0 0  

java.utilDate.<init>() 10,166 53 53 0 0Date.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 67

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

java.utilDate.getTime() 20,331 18 18 0 0Date.java 

java.langString.equalsIgnoreCase(String) 1 2 2 0 0String.java 

java.lang
ClassLoader.checkPackageAccess 
(Class, ProtectionDomain) 10 0 0 0 0ClassLoader.java 

java.langClass.forName(String) 1 0 0 0 0Class.java 

 .Signal dispatcher. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-PA. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-0. 1 0 0 0 0  

java.utilDate.<init>(long) 1 0 0 0 0Date.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.<clinit>() 1 0 0 0 0SFAExceptionFactory.java 

  .Thread-0. 1 0 0 0 0  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 68

Methods with the most methods objects: 

 

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

gov.ed.sfa.ita.exception

SFAExceptionFactory.createException 
(Class, long, Object[], Exception,  
String, String, String) 10,164 54,682 54,682 426,958 426,958SFAExceptionFactory.java 

 SFAExceptionJProbe.metricsSFA() 1 60,003 2,396 469,774 20,344  

gov.ed.sfa.ita.exceptionSFAException.<init>() 10,164 2,451 2,451 20,328 20,328SFAException.java 

 .main. 1 62,646 2,430 485,997 16,142  

gov.ed.sfa.ita.exceptionSFAExceptionFactory.getInstance() 10,164 399 399 2,076 2,076SFAExceptionFactory.java 

java.utilDate.<clinit>() 1 2 2 66 66Date.java 

java.langClassLoader.loadClassInternal(String) 8 207 207 59 59ClassLoader.java 

 SFAExceptionJProbe.main(String[]) 1 60,216 4 469,855 22  

 SFAExceptionJProbe.class$(String) 1 0 0 2 2  

 .Root. 1 202,151 1 485,997 0  

 .Reference Handler. 1 69,753 69,753 0 0  

 .Finalizer. 1 69,752 69,752 0 0  

java.utilDate.<init>() 10,166 53 53 0 0Date.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 69

Package Name Calls Cumulative 
Time 

Method 
Time 

Cumulative 
Objects 

Method 
Objects Source 

java.utilDate.getTime() 20,331 18 18 0 0Date.java 

java.langString.equalsIgnoreCase(String) 1 2 2 0 0String.java 

java.lang
ClassLoader.checkPackageAccess 
(Class, ProtectionDomain) 10 0 0 0 0ClassLoader.java 

java.langClass.forName(String) 1 0 0 0 0Class.java 

 .Signal dispatcher. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-PA. 1 0 0 0 0  

 .SymcJIT-LazyCompilation-0. 1 0 0 0 0  

java.utilDate.<init>(long) 1 0 0 0 0Date.java 

gov.ed.sfa.ita.exceptionSFAExceptionFactory.<clinit>() 1 0 0 0 0SFAExceptionFactory.java 

  .Thread-0. 1 0 0 0 0  

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 70

4.2.6 General Performance Metrics 
ITA Exception Handling was run through a performance testing harness to determining the exception 
handling speed on a system. The harness tested each of the above operations independently and as a 
whole. Running a test on a Compaq Desktop EN, 733 Mhz Pentium III, with JDK 1.2.2 on Windows NT 
4.0 yields the following performance numbers: 

Operation Average Time 
(ms) Calls Per Second 

Creation 0.00847 118063.7544 

Initialization 0.93625 1068.090788 

Throwing 0.05926 16874.78907 

Total 1.00398 996.0357776 

 

As the chart above indicates, the ITA Exception framework has strong performance characteristics and 
can function well under heavy loads.  As this shows, the majority of the time spent within an 
SFAException is initializing the exception with the SFAExceptionFactory.  This is to be expected, as it is 
the added functionality provided within SFAException and that is set using the SFAExceptionFactory that 
is the real advantage of the framework.  This cost in processing time is acceptable for the tasks necessary 
to throw a custom exception. 

4.2.7 Conclusion 
SFAException extends the capabilities of the base class java.lang.Exception considerably.  It gives the 
application developer the added function of external logging, nested exceptions, and extended and 
customizable error codes.  However, this functionality does come at a cost.  The SFAException does not 
perform as fast as java.lang.Exception, but it is not meant to be a substitute, but an extension of the 
existing functionality.   

SFAException performs this task to a high standard.  Upon analysis it showed no existing or potential 
bottlenecks within the code.  There are no problems with the allocation and garbage collection of objects 
from the SFAException or SFAExceptionFactory, nor are there loitering objects that could signify a 
memory leak or misallocation. 

The SFAException also performs well when run for speed and load.  The numbers for the testing system 
show the capabilities of the SFAException under a load, to quickly create, initialize and throw a 
customized and informative exception.  There are no performance deficiencies within the code or the 
design.     



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 71

4.3 User Guide 

4.3.1 Introduction 
4.3.1.1 Purpose 

This section provides a high-level summary and usage scenarios for the Integrated Technical Architecture 
(ITA) standard Exception Handling Framework.  The exception handling framework is part of a suite of 
frameworks called Reusable Common Services (RCS), which are provided to SFA applications by the ITA 
initiative.  The goal of the ITA initiative is to promote code reuse, standardization, and application of best 
practices across all SFA system development projects. 

4.3.1.2 Intended audience 

This section is intended for ITA and SFA application programmers who need to understand the Exception 
Handling framework in order to use this framework in their application. 

4.3.1.3 Background 

The purpose of exception handling is to catch problems in a program that would otherwise lead to 
program error and failure conditions.  An error in Java is an unrecoverable abnormal condition.  For 
example, an error can occur when a networking connection is unexpectedly cut, or the JVM runs out of 
memory.  The ITA Exception Handling framework exists to provide a mechanism by which client 
programmers may be able to trap exceptional conditions within their code.  The benefits of having a 
framework to handle exceptions are to minimize duplicated effort and save time for programmers during 
both development and maintenance of the application.  For more detail on the ITA Exception Handling 
framework please see the corresponding detailed design document. 

4.3.1.4 Scope 

This section covers only installation, features, and usage scenarios of the ITA Exception Handling 
framework.  The Exception Handling framework is typically used with the ITA Logging framework – 
however, the Logging framework is not covered in this section.  Consult the ITA Logging User Guide for 
more information on the Logging framework. 

4.3.1.5 Assumptions 

The Exception Handling framework has been designed and tested in a J2EE application server 
environment.  Specifically, it was developed in the current production environment for SFA:  IBM 
WebSphere 3.5, running on its required IBM JDK version 1.2.2.  It should also work with the current 
JavaServer Pages (1.1), Java Servlet (2.2), Java Messaging Service (1.0.1), and Java Database Connectivity 
(2.0) specifications for this server.  It was built and tested on Sun Solaris 2.6 operating system. 

4.3.2 Description 
4.3.2.1 Overview 

The ITA Exception Handling framework is designed to provide a mechanism for trapping and dealing 
with any erroneous or unexpected actions that applications may encounter during runtime.  The 
Exception Handling Framework also allows error message formatting standards to be developed and 
enforced to ensure proper information is gathered if a program failure occurs. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 72

4.3.2.2 Features 

The exception handling framework provided by Java is very generic.  It gives very generic messages to 
the developer, which makes it difficult to find the actual cause of the exception.  Because of this, a custom 
framework for exception handling can be of great benefit to a development effort.  With a custom 
exception handling framework, individual exceptions can be identified and handled on a case-by-case 
basis.   

The messages for exceptions are stored in a properties file, allowing for easily updated messages.  The 
properties file is parameterized, however, so values can be inserted at run-time as needed.  In this way 
the exception handling framework provides a error message handling mechanism that is at the same time 
standardized and dynamic. 

4.3.2.3 Main Concepts 

The ITA Exception Handling Framework enhances the ability of an application to define and trap errors 
that may arise as the application executes.  The Exception Handling framework includes the following 
key components: 

• SFAExceptionFactory 
• SFAException 

The SFAException class is the base exception, which can be customized on an application by application 
basis. It has set() and get() methods for each of its main properties, such as errorCode, methodName, 
className, and so forth. 

The SFAExceptionFactory is the class used to create exceptions.  It should work in any application 
without modifications.  This class is designed to work as a singleton (i.e. there is only one instance of it 
per VM or at least per classloader).  Therefore, a reference to the factory is obtained via the getInstance() 
method.  It also contains some exception-centered utility methods, such as getNestedException(), which 
can be used to obtain the nested exception for all standard Java exception types.  

4.3.3 Installation  
4.3.3.1 Software requirements 

The ITA Exception Handling Framework should work in any Java environment above JDK 1.2.2, 
including all Java application servers or standalone Java applications.  However, it was designed and 
tested in SFA’s production server environment, IBM WebSphere 3.5.3 and on IBM’s JDK 1.2.2.  It has no 
other software dependencies.  However, if applications intend to log error messages using the ITA 
Logging framework, then the user guide for that framework should be consulted for the appropriate 
configuration and supporting libraries. 

4.3.3.2 Installation procedures 

The Exception Handling framework uses one jar file, rcs_exception_v1.5.jar, for operation.  This jar file 
contains all necessary files for proper execution of the Exception Handling framework.  The classpath of 
the application or web server should be updated to refer to this file.  If the list of error codes is updated 
(see directly below, under ‘Configuration’) then the class SFAException will need to be recompiled and 
the jar file updated. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 73

4.3.4 Configuration 
The SFAException class distributed here for use with SFA development projects contains a set of generic 
error codes to serve as a starting point.  Each project should spend time early on in the development cycle 
to define a list of error codes encompassing all of the potential error conditions that their application may 
encounter.  These error codes should be updated in the set of error code constants defined in the 
SFAException class.  The beginning of the error code section is listed below for reference: 

public class SFAException extends Exception  
{ 
 // List of private and protected class variables… 
 // Generic Exceptions 
 public static final long UNEXPECTED_EXCEPTION= 0; 
 public static final long MISSING_PROPERTY= 1; 
 public static final long BAD_PROPERTY_FORMAT= 2; 
 public static final long ERROR_LOADING_PROPERTY_FILE= 3; 
 public static final long NEW_INSTANCE_FAILED= 4; 
 public static final long JNDI_INIT_ERROR= 5; 
 public static final long INVALID_HOME_INTERFACE= 6; 

 
With the exception codes defined, a list of corresponding exception messages should be created for the 
errorMessages_en_US.properties resource file.  The message number in the resource file corresponds to 
the message constant defined in the customized SFAException handling class.  A sample resource file is 
listed below: 

# This file contains mapping information from error codes to error 
messages 
msg0="Unexpected exception caught" 
msg1="Missing property {0}" 
msg2="Bad property format {0} in property {1}" 
 
The constant UNEXPECTED_EXCEPTION in the first list corresponds to the message “Unexpected 
exception caught” in the error messages file.  This linkage is set by the number (0) that they share.  Each 
entry in the messages file consists of a key – value pair where the key is in the form of:  
     ‘msg’ + [the error code as defined in the SFAException class] 
When a error code for an exception is set, the factory looks up the corresponding message by this key.  
Therefore, it is critical that these mappings are checked before the code and file is deployed so that 
appropriate messages are displayed/logged for the message codes. 

Note that the message text for msg1 and msg2 contain integers surrounded by curly braces.  For example: 
     "Missing property {0}" 
These are parameterized fields which can be modified at run time.  When a SFAException is created, 
values for these parameters can be set and inserted into the message text.  This allows messages to be 
flexible and report run-time application status.  An example of setting parameterized field follows in the 
usage section of this document. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 74

4.3.5 Usage Scenarios 
The following examples illustrate the main usage scenarios for the ITA Exception Handling framework. 

4.3.5.1 Obtaining a reference to SFAExceptionFactory and generating a SFAException 

 
4.3.5.2 Catching an error and throwing it, wrapped in an SFAException 

 /** Get an instance of the factory. */  
 gov.ed.sfa.ita.exception.SFAExceptionFactory sfaFac = 
SFAExceptionFactory.getInstance(); 
 
 /** Create an array of Objects as message parameters. 
Basically, these values will be passed to the message located in the 
property file so that it can be substituted at run-time */ 
 String value1 = "<Dynamically substitute value 1>"; 
 String value2 = "<Dynamically substiture value 2>";  
 Object[] arguments = {value1, value2}; 
 
 /** If this was being raised from a try-catch block then the 
caught exception could be set as the original exception.  In this 
case it is null. */ 
 Exception origException = null; 
 
 /** Get the factory to create an exception, passing the 
appropriate parameters.  */ 
 gov.ed.sfa.ita.exception.SFAException sfaExcep = 
sfaFac.createException(SFAException.class,  
      



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 75

 
4.3.5.3 Setting parameterized fields in the SFAException 

try { 
 // Some application code that may raise a SQLException, for 
example 
} 
catch (SQLException e) { 
 /** Get an instance of the factory. */  
 gov.ed.sfa.ita.exception.SFAExceptionFactory sfaFac = 
SFAExceptionFactory.getInstance(); 
 
 /** As this is being raised from a try-catch block then the 
caught exception, e, is set as the original exception. */ 
 Exception origException = e; 
 
 /** Get the factory to create an exception, passing the 
appropriate parameters.  */ 
 gov.ed.sfa.ita.exception.SFAException sfaExcep = 
sfaFac.createException(SFAException.class,  

      
gov.ed.sfa.ita.exception.SFAException.DEFINED_SQL_EXCEPTION_COD
E,  
null, 
origException,  
"ExampleLoggingAndException",  
"main", 
null); 

   
 /** Throw the new exception, with the nested SQLException. */ 
 throw sfaExcep; 
} 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 76

4.3.6 Last Resort Handlers 
Part of a complete exception handling framework is the accounting for a last-resort handling mechanism.  
A last-resort handler ensures that no application-level exception ever reaches the user without at least 
some processing.  For example, there may be situations where the application has no alternatives but to 
report an error to the user and exit.  In this case, a well written web application will at least reformat the 
error in a human-understandable format, provide links or phone numbers for help desk support to 
resolve the issue, and perhaps email or page system administrators with some captured state information. 

In the IBM WebSphere environment, every Web application can specify a default error page that will be 
called in the event of exceptions or errors that are not handled directly in application code. The error page 
has access to the bean com.ibm.websphere.servlet.error.ServletErrorReport for accessing error 
information.   An example of the page is below: 

Sample Last Resort Error Handling JavaServer Page: error_handler.jsp 

 
 
 
 

 

 /** Get an instance of the factory. */  
 gov.ed.sfa.ita.exception.SFAExceptionFactory sfaFac = 
SFAExceptionFactory.getInstance(); 
 
 /** Use the factory to create an exception, passing the 
appropriate parameters.  */ 
 gov.ed.sfa.ita.exception.SFAException sfaExcep = 
sfaFac.createException(SFAException.class,  

gov.ed.sfa.ita.exception.SFAException.UNEXPECTED_EXCEPTION,  
null, 
null,  
"ExampleLoggingAndException",  
"main", 
null); 

  
 /** If being used in an application, throw the exception. */ 
 throw sfaExcep; 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 77

This error page can be extended with more messages, application specific graphics, etc., to make it more 
appealing to a user who would encounter it.   

Specifying the error page can be done via the administrative console.  The setting can be made on the 
‘Advanced’ tab under the  
WebSphere Administrative Domain -> [host name] -> [Default (or Specified) Server] -> [Default (or 
Specified) Servlet Engine] -> [Web Application]  
branch of the navigation pane. 

In addition, every application JSP can specify its own error handling page through the <%@ page 
errorPage=”error_handler.jsp”%> page directive.  Then, when an unhandled error occurred in the 
application page, it would redirect to the error_handler.jsp page.  The application level default error page 
would be the preferred mechanism, however, as it would ensure consistency in last-resort error handling 
for the application. 

For more information on this bean and on default error pages in WebSphere, please consult the product 
documentation and JavaDocs (package com.ibm.websphere.servlet.error).  

4.3.7 Resources 
The following is a list of referenced and/or related publications. 

The Exception Handling API JavaDocs 

<%@ page import="com.ibm.websphere.servlet.error.*" %> 
<!--  
   Simple error page for reporting application errors.  This error page 
is called when a servlet throws an Exception, or by calling 
response.sendError().  Error pages can use the request-scoped bean 
named "ErrorReport" to get more information about the error. 
---> 
<jsp:useBean id="ErrorReport" scope="request" 
class="com.ibm.websphere.servlet.error.ServletErrorReport"/> 
<html> 
<head><title>Error <%=ErrorReport.getErrorCode()%></title></head> 
<body> 
 
<% if (ErrorReport != null) { %> 
<H1>Error : <%= ErrorReport.getErrorCode() %> </H1> 
<H4>An error has occured while processing request: <%= 
HttpUtils.getRequestURL(request) %></H4> 
<B>TargetServletName: </B><%= ErrorReport.getTargetServletName() %><BR> 
<B>Message: </B><%= ErrorReport.getMessage() %><BR> 
<B>StackTrace: </B><%= ErrorReport.getStackTrace() %><BR> 
<B>RootCause: </B><%= ErrorReport.getRootCause() %><BR> 
<% } %> 
 
</html> 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 78

The ITA Homepage – http://www.ita.sfa.ed.gov 

IBM WebSphere Infocenter -  
http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/index.html 

IBM WebSphere API documents - 
http://www-4.ibm.com/software/webservers/appserv/doc/v35/ae/apidocs/index.html 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 79

 

5 RCS  – Logging Framework 
The logging framework enhances the current logging ability of the ITA Web application servers 
(specifically WebSphere), by allowing developers to dynamically set logging functionality without 
modifying tested source code.  The logging framework also allows SFA to develop and enforce log 
formatting standards to ensure proper information is gathered if a failure occurs. 

The framework is a simple and robust logging system that is not tied to any specific application server.  It 
provides the following features: 

• Simple logging API  

• Background logging (Configurable)  

• Multiple message severities  

• Logs the name of the thread that issued the message (Configurable)  

• Logs the name of the host that issued the message (Configurable)  

• Arbitrary log channel names  

• Pluggable log message listeners  

• Pluggable log formatting modules for each listener  

• Pluggable log policy modules for each listener  

• Configuration can be modified on-the-fly while the system is running  

• A running configuration can be written to XML for re-load later  

The framework lets the programmer log messages easily through a simple API.  During development and 
testing, the messages may be simply sent to the console where the application is running or to a single log 
file.  When the system is moved into production, log messages can be split up by severity (for example, 
fatal messages may trigger the paging of an operations support resource) and log files may be rotated 
every night and archived.  These kinds of configuration changes do not require changes to the code and 
can even be made while the system is running. 

 

5.1 Testing Conditions & Results 

5.1.1 Automated Testing 
Logging to file 

Important Preconditions:   

• The method that loads the configuration file [Syslog.addLogging() ]  must be run in order to 
configure input/output settings.   

• This method is inherently tested when testing all other methods, as it is not possible to use the 
logging framework without first calling this method. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 80

 
Condition 
Number 

Detailed 
Condition 

Test Class 
Name 

Test Class 
Method 

Class 
Name 

Method 
Name 

Results Data File 
Name 
[input] 

Data File 
Name 

[output] 
1 Check if a 

message is 
going to be 
logged. 

TestLogging testCanLog Syslog canLog Return true if a 
message can be 
logged.  Return false 
if a message cannot 
be logged  

rcsFile.xml rcslog.txt  
& 

console_ou
tput.txt 

2 A message 
with INFO 
severity level 
is logged to 
the output 
file 

TestLogging testLog Syslog log Log a message with 
an info severity level 

rcsFile.xml rcslog.txt  
& 

console_ou
tput.txt 

3 A message 
with DEBUG 
severity level 
is logged to 
the output 
file 

TestLogging testLog Syslog log Log a message with 
a debug severity level 

rcsFile.xml rcslog.txt  
& 

console_ou
tput.txt 

4 A message 
with 
WARNING 
severity level 
is logged to 
the output 
file 

TestLogging testLog Syslog log Log a message with 
a warning severity 
level 

rcsFile.xml rcslog.txt  
& 

console_ou
tput.txt 

5 A message 
with ERROR 
severity level 
is logged to 
the output 
file 

TestLogging testlog Syslog log Log a message with 
an error severity level 

rcsFile.xml rcslog.txt  
& 

console_ou
tput.txt 

6 A message 
with FATAL 
severity level 
is logged to 
the output 
file 

TestLogging testlog Syslog log Log a message with 
a fatal severity level 

rcsFile.xml rcslog.txt  
& 

console_ou
tput.txt 

 

Logging to console 

Important Preconditions: 

• The method that loads the configuration file [Syslog.addLogging() ]  must be run in order to 
configure input/output settings. 

• This method is inherently tested when testing all other methods, as it is not possible to use the 
logging framework without first calling this method. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 81

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logging to file and console 

Important preconditions: 

• The method that loads the configuration file [Syslog.addLogging() ]  must be run in order to 
configure input/output settings. 

• This method is inherently tested when testing all other methods, as it is not possible to use the 
logging framework without first calling this method. 

Condition 
Number 

Detailed 
Condition 

Test Class 
Name 

Test Class 
Method 

Class 
Name 

Method 
Name 

Results Data File 
Name 
[input] 

Data File 
Name 

[output] 

1 Check if a 
message is 
going to be 
logged. 

TestLogging testCanLog Syslog canLog Return true if a 
message can be 
logged.  Return 
false if a message 
cannot be logged  

rcs.xml rcslog.txt  
& 

console_ou
tput.txt 

Condition 
Number 

Detailed 
Condition 

Test Class 
Name 

Test Class 
Method 

Class 
Name 

Method 
Name 

Results Data File 
Name 
[input] 

Data File 
Name 

[output] 
1 Check if a 

message is 
going to be 
logged. 

TestLogging testCanLog Syslog canLog Return true if a 
message can be 
logged.  Return false 
if a message cannot 
be logged  

rcsConsole
.xml   

console_o
utput.txt 

2 A message 
with INFO 
severity level is 
logged on the 
console 

TestLogging testLog Syslog log Log a message with 
an info severity level 

rcsConsole
.xml   

console_o
utput.txt 

3 A message 
with DEBUG 
severity level is 
logged on the 
console 

TestLogging testLog Syslog log Log a message with 
a debug severity level 

rcsConsole
.xml   

console_o
utput.txt 

4 A message 
with WARNING 
severity level is 
logged on the 
console 

TestLogging testLog Syslog log Log a message with 
a warning severity 
level 

rcsConsole
.xml   

console_o
utput.txt 

5 A message 
with ERROR 
severity level is 
logged on the 
console 

TestLogging testlog Syslog log Log a message with 
an error severity level 

rcsConsole
.xml   

console_o
utput.txt 

6 A message 
with FATAL 
severity level is 
logged on the 
console 

TestLogging testlog Syslog log Log a message with 
a fatal severity level 

rcsConsole
.xml   

console_o
utput.txt 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 82

Condition 
Number 

Detailed 
Condition 

Test Class 
Name 

Test Class 
Method 

Class 
Name 

Method 
Name 

Results Data File 
Name 
[input] 

Data File 
Name 

[output] 

2 A message with 
INFO severity 
level is logged 
on the console 
and to the 
output file 

TestLogging testLog Syslog log Log a message 
with an info 
severity level 

rcs.xml rcslog.txt  
& 

console_ou
tput.txt 

3 A message with 
DEBUG severity 
level is logged 
on the console 
and to the 
output file 

TestLogging testLog Syslog log Log a message 
with a debug 
severity level 

rcs.xml rcslog.txt  
& 

console_ou
tput.txt 

4 A message with 
WARNING 
severity level is 
logged on the 
console 

TestLogging testLog Syslog log Log a message 
with a warning 
severity level 

rcs.xml rcslog.txt  
& 

console_ou
tput.txt 

5 A message with 
ERROR severity 
level is logged 
on the console 
and to the 
output file 

TestLogging testlog Syslog log Log a message 
with an error 
severity level 

rcs.xml rcslog.txt  
& 

console_ou
tput.txt 

6 A message with 
FATAL severity 
level is logged 
on the console 
and to the 
output file 

TestLogging testlog Syslog log Log a message 
with a fatal severity 
level 

rcs.xml rcslog.txt  
& 

console_ou
tput.txt 

5.2 Performance Analysis 

5.2.1 Summary 
This section reviews the performance testing of the ITA Logging framework.  Its purpose is to provide an 
architecture review of the framework and identify potential performance issues and performance 
considerations that an application development group should be aware of when using the framework.  It 
consists of several areas of analysis: 

• Architectural Overview 
• Testing Environment and Configuration 
• Results and Analysis: 

• Heap Usage 
• Garbage Collections 
• Code Efficiency 

• General Metrics 
 
A careful review of the ITA Logging framework revealed no performance deficiencies in its design or 
code.  In fact, the review found that high performance was a key requirement in the design of the 
framework and the architecture of the framework serves to meet that requirement.  Performance metrics 
further underline the capabilities of the framework. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 83

Some areas of consideration were noted, however.  These areas did not involve deficiencies in the 
framework itself.  Instead it involved framework configurations and usages that would lead to slow 
performance.  This behavior would be the result of formatting or logging messages in ways that are 
resource intensive or involve subsystem latencies.  Examples of these usages would be formatting HTML, 
logging via e-mail, or logging via JMS.  In these cases, the more sophisticated logging capabilities should 
be weighed against the added performance hit of their use. 

5.2.2 Background 
The main task that applications perform is usually not logging. Therefore, logging should not take up a 
significant amount of the system's resources nor interfere with its operation. The default implementations 
of loggers, log policies, and text formatters included with the ITA Logging framework have all been 
written with performance in mind.  

ITA Logging framework implementations perform three operations when writing a message to a log file.  
These operations are described below: 

1. Policy Check 
Syslog asks the policy if it should log a given message or not. This operation occurs most often. 
Assuming the use of the SimpleLogPolicy policy, the policy check consists of integer bitmask 
operations and, if channel sets are involved, a HashMap lookup. A policy check runs extremely fast in 
modern VMs -- on the order of millions of calls per second -- and inflicts almost no overhead even 
with extremely high message volumes. If that performance level isn't satisfactory, set the policy to 
accept the ALL_CHANNEL channel, and no HashMap lookup will occur. It is also common to use a 
static final boolean constant around debugging calls so that those calls can turn off completely at 
compile time, like this:  
 
public interface DebugFlag  
{  
public static final boolean DEBUG = true; // or false  
} ...  
if (DebugFlag.DEBUG) Syslog.debug(this, "Here is a debug message."); 

2. Format Call 
The format call converts a log message to text. The default log formatter has been specifically 
optimized for speed. It uses StringBuffer objects and generally copies character arrays into those 
buffers for formatting, caching date format instances, and so forth.  

3. Message write  
Actually writing the message to its final destination can be expensive. The file-based loggers all use 
buffered streams and have been extensively tested for speed. In addition, they are all necessarily 
thread-safe, so in the case of multithreaded applications, there can exist some unavoidable contention. 
Other loggers depend on other systems for their performance -- RemoteLog relies on the RMI 
implementation, and JMSLog depends on the JMS implementation -- so if the API providers are slow, 
the logger will be slow. The MailLog logger uses a background thread to connect to SMTP servers 
because this operation is generally quite slow. 

5.2.3 Test Environment 
The testing harness was run on a standard SFA developer workstation.  The hardware consisted of a 
Compaq Deskpro with a single 600 MHz Pentium III processor and 512 MB of RAM.  The machine ran 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 84

Windows NT 4.0 Service Pack 6.  The Java environment was Sun’s JDK 1.3.  While tests were run, no 
other applications were loaded into memory, and the system was not interacted with.  This was done in 
order to leave all resources available to the test harness, and eliminate the possibility of unexplained 
behavior in the tables of results. 

5.2.4 Test Configuration 
The ITA Logging framework was configured in a very standard manner, as it would be in actual usage.  
The configuration of the framework is done through its XML configuration file.  The contents of the file as 
used are listed below.  Key points of note are: 

• The default mask is set to “DEBUG” 
• The standard syslog FileLog is the logger class 
• The logger ‘listens’ for events on all channels 
• The standard syslog SimpleLogPolicy is the policy check class 
• The standard syslog SimpleSyslogTextFormatter is the formatting class 
 

<Syslog defaultMask="DEBUG"> 
  <Logger class="com.protomatter.syslog.FileLog" name="FileLogger"> 
    <Policy class="com.protomatter.syslog.SimpleLogPolicy"> 
      <channels>ALL_CHANNEL</channels> 
      <logMask>INHERIT_MASK</logMask> 
    </Policy> 
    <Format class="com.protomatter.syslog.SimpleSyslogTextFormatter"> 
      <showChannel>false</showChannel> 
      <showThreadName>false</showThreadName> 
      <showHostName>false</showHostName> 
      <dateFormat>HH:mm:ss MM/dd</dateFormat> 
      <dateFormatCacheTime>1000</dateFormatCacheTime> 
      <dateFormatTimeZone>America/New_York</dateFormatTimeZone> 
    </Format> 
    <fileName>output.txt</fileName> 
    <append>true</append> 
    <autoFlush>false</autoFlush> 
  </Logger> 
</Syslog> 

 
The ITA Logging test harness has its own configuration file, which controls such things as the type of 
logging and the number of iterations to perform.  The contents of this file are listed below.  Key points of 
note are: 

• The severity level is set to “ERROR” 
• The number of policy check iterations is 100,000 
• The number of formatting calls is 10,000 
• The number of full logs (which includes the policy check and format every time) is 1,000 
 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 85

<PerformanceTest> 
  <Message> 
    
<loggerClassname>com.protomatter.syslog.PerformanceTest</loggerClass
name> 
    <level>ERROR</level> 
    <channel>DEFAULT_CHANNEL</channel> 
    <message>This is the short message text, it's right here.</message> 
    <detail> 
    </detail> 
  </Message> 
  <PolicyTest>true</PolicyTest> 
  <FormatTest>true</FormatTest> 
  <DirectTest>true</DirectTest> 
  <SyslogTest>true</SyslogTest> 
  <NumThreads>5</NumThreads> 
  <PolicyIterations>100000</PolicyIterations> 
  <FormatIterations>10000</FormatIterations> 
  <LogIterations>1000</LogIterations> 
</PerformanceTest> 

 

5.2.5 Test Scenarios 
The logging performance test focused on one usage scenario for its analysis: writing a message to a local 
file-based log on the test machine.  The usage scenario covers all major components of the logging 
framework: policy check, format message, and message write.  The policy check was run 100,000 times, 
the message format was run 10,000 times, and the message write was run 1,000 times, as the performance 
test configuration file indicates.   

The policy check used a SimpleLogPolicy class, which does basic checking against channels and severity 
levels.  This policy check mirrors the one most applications would be expected to use.   

The policy check did not use the PerClassPolicy class, which can filter out messages depending on the 
message origination.  It would be expected that this type of policy check would incur more processing 
and therefore be slower than a basic policy check.  It is also more complex to configure.  Because of this it 
be used only in situations where there is a specific need for such granularity. 

The message format used the SimpleSyslogTextFormatter, which is the most straightforward of all the 
message formatters.  It is also the formatter most likely to be used in a logging installation.  Other 
formatters, such as the HTMLSyslogTextFormatter, would be expected to be slower as they format the 
message in a more sophisticated manner.  These loggers would be used only where the formatting needs 
would merit the additional processing. 

The message log used the FileLog logger, which is also one of the most straightforward but most widely 
used loggers.  This is the type of logger that would be used, for example, by a web server writing 
messages to a local log file.  Most other file loggers, such as the TimeRolloverLog and LengthRolloverLog, 
should perform similarly.  The one exception would be the OpenFileLog – as it opens and closes the file 
between each write, use of this logger is significantly more expensive.   



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 86

There are many loggers available, such as the DatabaseLog, MailLog, and JMSLog, which behave quite 
differently from the file loggers.  These loggers will vary significantly in there performance, as they are 
dependant on other subsystems for their ultimate performance.  For example, the DatabaseLog would 
depend on the database software, hardware, and configuration in place.  There are many performance-
impacting variables to consider when implementing any of these other loggers. 

5.2.6 Analysis 
The analysis consists of three parts: 

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code to 
identify loitering object and over-allocation of objects.   

2. Garbage Collection: The garbage collector is a process that runs on a low priority thread.  When 
the JVM attempts to allocate an object but the Java heap is full, the JVM calls the garbage 
collector.  The garbage collector frees memory using some algorithm to remove unused objects.  
Examining the activities of the garbage collection will give a good indication of the performance 
impact of the garbage collector on the application. 

3. Code Efficiency: To identify any performance bottleneck due to inefficient code algorithms 

 

5.2.6.1 Memory (Heap) Usage 

The performance test utilized JProbe Profiler’s Memory Debugger to identify the parts of the logging 
framework that might be causing loitering objects.  This was accomplished by analysis of the Java heap.  
The Runtime Heap Summary window can be used to view instance counts and information on allocating 
methods. 

The Heap Usage Chart below plots the size of the Java heap at selected time intervals. The chart helps to 
visualize memory use in the Java heap. It displays the available size of the Java heap (in pink) and the 
used memory (in blue) over time. 

The first part of the chart indicates a steady graph.  A steady graph indicates that some core set of objects 
are remaining in memory.  This is expected behavior, as the framework instantiates a set of core objects 
that remain in memory.  This architecture helps performance as it minimzes recreation of commonly used 
objects. 

The second part of the chart indicates a series of spikes.  Steep spikes in the Heap Usage Chart represent 
temporary objects being allocated and garbage collected. If the level of the troughs become higher over 
time, then not all the temporary objects are garbage collected.  As can be seen the troughs remain steady 
over time, and while multiple objects are being created and destroyed, there do not appear to be any 
lingering objects. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 87

 

5.2.6.2 Garbage Collections 

The Garbage Monitor was used to identify the classes that are responsible for large allocations of short-
lived objects. It shows the cumulative results of successive garbage collections during the session. The 
Garbage Monitor shows only the top ten classes, representing the classes with the most instances garbage 
collected. During the session, the top ten classes will change as the number of garbage collected objects 
accumulates.  The list below is the final top ten, displaying cumulative objects created at the end of 
program execution. 

Each row identifies the class by package name, if any, and class name. The next columns state, in order, 
the number of garbage collected objects (GC’ed column) for the class, the number of instances remaining 
in the heap (Alive column), and the method that allocated the instances of the class (AllocatedAt column).  
The same class can appear more than once because more than one method allocated instances of the class. 

The chart below does not show any unexpected activity, or activity that would indicate a performance 
problem.  Most of the objects created are strings, string buffers, or character arrays.  These numbers are in 
line with the framework requirements and expected behavior as it formats a large number of messages to 
write them to the file. 

Package Class GC’ed Alive Allocated At 
java.lang StringBuffer 50,000 0  
java.lang StringBuffer 9,611 389  
com.protomatter.syslog SyslogMessage 4,611 389  
java.lang StringBuffer 86 24  
java.lang String 22 48  
 char[] 21 49  
com.protomatter.syslog PerformanceTest$Test 15 5  
java.util Date 12 1  
java.lang String 10 1  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 88

 char[] 8 3  
 

5.2.6.3 Code Efficiency 

The charts on the following pages serve to document the performance characteristics of the logging 
framework with several lists: methods with the most calls, methods with the most time spent in them, and 
methods with the most created objects.  These measures are basic indicators of processing resource 
utilization.  The lists can be reviewed for unexpected activity or optimization opportunities. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 89

Methods with the most calls: 

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

SimpleLogPolicy.shouldLog(SyslogM
essage)  

com.protomatter.syslog
  510,000 66,666 66,666 0 0 SimpleLogPolicy.java  

StringBuffer.append(char[])  java.lang  360,000 10,894 10,894 0 0 StringBuffer.java  

StringBuffer.append(char)  java.lang  300,000 7,659 7,659 0 0 StringBuffer.java  

StringBuffer.append(String)  java.lang  60,275 2,258 2,258 68 68 StringBuffer.java  

String.toCharArray()  java.lang  60,023 34,084 34,084 60,023 60,023 String.java  

StringBuffer.append(Object)  java.lang  60,002 2,885 2,885 1 1 StringBuffer.java  

String.toString()  java.lang  60,001 1,361 1,361 0 0 String.java  

SimpleSyslogTextFormatter.formatLo
gEntry(StringBuffer, 
SyslogMessage)  

com.protomatter.syslog
  60,000 98,079 17,831 60,303 0 

SimpleSyslogTextFormatter.j
ava  

SimpleSyslogTextFormatter.trimFro
mLastPeriod(StringBuffer, String, int)  

com.protomatter.syslog
  60,000 55,528 11,750 60,000 0 

SimpleSyslogTextFormatter.j
ava  

StringBuffer.<init>(int)  java.lang  60,000 35,870 35,870 60,000 60,000 StringBuffer.java  

SimpleSyslogTextFormatter.formatM
essageDetail(StringBuffer, 
SyslogMessage)  

com.protomatter.syslog
  60,000 7,752 4,138 0 0 

SimpleSyslogTextFormatter.j
ava  

StringBuffer.append(char[], int, int)  java.lang  60,000 2,035 2,035 0 0 StringBuffer.java  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 90

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

SimpleSyslogTextFormatter.formatD
ate(long)  

com.protomatter.syslog
  60,000 1,767 1,746 303 13 

SimpleSyslogTextFormatter.j
ava  

SimpleSyslogTextFormatter.getString
ForLevel(int)  

com.protomatter.syslog
  60,000 1,422 1,422 0 0 

SimpleSyslogTextFormatter.j
ava  

 

Methods with the most total time (includes time spent in sub-methods): 

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

.Root.    1 
616,38

2 24 
226,24

6 0   

PerformanceTest$TestThread.run()  
com.protomatter.syslog
  20 

377,57
2 96,678 

205,50
4 50,000 PerformanceTest.java  

SimpleSyslogTextFormatter.formatLo
gEntry(StringBuffer, 
SyslogMessage)  

com.protomatter.syslog
  60,000 98,079 17,831 60,303 0 

SimpleSyslogTextFormatter.j
ava  

FileLog.log(SyslogMessage)  
com.protomatter.syslog
  10,000 84,044 1,979 40,411 10,002 FileLog.java  

.main.    1 80,594 1,013 20,738 1,438   

PerformanceTest.main(String[])  
com.protomatter.syslog
  1 79,574 23 19,217 279 PerformanceTest.java  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 91

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

.Reference Handler.    1 79,095 79,095 0 0   

.Finalizer.    1 79,094 79,094 0 0   

Thread.join()  java.lang  20 76,799 76,799 0 0 Thread.java  

Writer.write(String)  java.io  10,001 72,030 72,030 120 120 Writer.java  

 

Methods with the most time spent only in that method (not including sub-methods): 

Name Package Calls Total 
Time 

Method 
Time 

Total 
Obje
cts 

Method 
Objects 

Source 

PerformanceTest$TestThread.run()  
com.protomatter.syslog
  20 377,572 96,678 

205,5
04 50,000 PerformanceTest.java  

.Reference Handler.    1 79,095 79,095 0 0   

.Finalizer.    1 79,094 79,094 0 0   

Thread.join()  java.lang  20 76,799 76,799 0 0 Thread.java  

Writer.write(String)  java.io  10,001 72,030 72,030 120 120 Writer.java  

SimpleLogPolicy.shouldLog(SyslogM
essage)  

com.protomatter.syslog
  510,000 66,666 66,666 0 0 SimpleLogPolicy.java  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 92

Name Package Calls Total 
Time 

Method 
Time 

Total 
Obje
cts 

Method 
Objects 

Source 

StringBuffer.<init>(int)  java.lang  60,000 35,870 35,870 
60,00

0 60,000 StringBuffer.java  

String.toCharArray()  java.lang  60,023 34,084 34,084 
60,02

3 60,023 String.java  

SimpleSyslogTextFormatter.formatLo
gEntry(StringBuffer, 
SyslogMessage)  

com.protomatter.syslog
  60,000 98,079 17,831 

60,30
3 0 

SimpleSyslogTextFormatter.j
ava  

SimpleSyslogTextFormatter.trimFro
mLastPeriod(StringBuffer, String, int)  

com.protomatter.syslog
  60,000 55,528 11,750 

60,00
0 0 

SimpleSyslogTextFormatter.j
ava  

StringBuffer.append(char[])  java.lang  360,000 10,894 10,894 0 0 StringBuffer.java  

 

Methods with the most total objects (includes objects created in sub-methods): 

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

.Root.    1 
616,38

2 24 
226,24

6 0   

PerformanceTest$TestThread.run()  
com.protomatter.syslog
  20 

377,57
2 96,678 

205,50
4 50,000 PerformanceTest.java  

SimpleSyslogTextFormatter.formatLo
gEntry(StringBuffer, 

com.protomatter.syslog
  60,000 98,079 17,831 60,303 0 

SimpleSyslogTextFormatter.j
ava  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 93

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

SyslogMessage)  

String.toCharArray()  java.lang  60,023 34,084 34,084 60,023 60,023 String.java  

StringBuffer.<init>(int)  java.lang  60,000 35,870 35,870 60,000 60,000 StringBuffer.java  

SimpleSyslogTextFormatter.trimFro
mLastPeriod(StringBuffer, String, int)  

com.protomatter.syslog
  60,000 55,528 11,750 60,000 0 

SimpleSyslogTextFormatter.j
ava  

FileLog.log(SyslogMessage)  
com.protomatter.syslog
  10,000 84,044 1,979 40,411 10,002 FileLog.java  

Syslog.log(InetAddress, Object, 
Object, Object, Object, int)  

com.protomatter.syslog
  5,000 46,671 131 35,390 0 Syslog.java  

Syslog.log(Object, Object, Object, 
int)  

com.protomatter.syslog
  5,000 46,738 38 35,390 0 Syslog.java  

Syslog.log(Object, Object, Object, 
Object, int)  

com.protomatter.syslog
  5,000 46,700 29 35,390 0 Syslog.java  

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 94

Methods with the most objects created only in that method (not including sub-methods): 

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

String.toCharArray()  java.lang  60,023 34,084 34,084 60,023 60,023 String.java  

StringBuffer.<init>(int)  java.lang  60,000 35,870 35,870 60,000 60,000 StringBuffer.java  

PerformanceTest$TestThread.run()  
com.protomatter.syslog
  20 

377,57
2 96,678 

205,50
4 50,000 PerformanceTest.java  

StringBuffer.toString()  java.lang  10,110 1,928 1,928 10,110 10,110 StringBuffer.java  

FileLog.log(SyslogMessage)  
com.protomatter.syslog
  10,000 84,044 1,979 40,411 10,002 FileLog.java  

Thread.getName()  java.lang  5,000 2,639 2,639 10,000 10,000 Thread.java  

SAXBuilder.build(File)  org.jdom.input  2 1,670 1,670 9,631 9,631 SAXBuilder.java  

Syslog.log(InetAddress, Object, 
Object, Object, Object, int, Thread, 
String, long)  

com.protomatter.syslog
  5,000 43,812 1,037 25,390 5,002 Syslog.java  

DecimalFormat.<init>(String)  java.text  4 130 130 2,252 2,252 DecimalFormat.java  

String.toCharArray()  java.lang  60,023 34,084 34,084 60,023 60,023 String.java  

StringBuffer.<init>(int)  java.lang  60,000 35,870 35,870 60,000 60,000 StringBuffer.java  

PerformanceTest$TestThread.run()  
com.protomatter.syslog
  20 

377,57
2 96,678 

205,50
4 50,000 PerformanceTest.java  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 95

Name Package Calls Total 
Time 

Method 
Time 

Total 
Object
s 

Method 
Objects 

Source 

StringBuffer.toString()  java.lang  10,110 1,928 1,928 10,110 10,110 StringBuffer.java  

FileLog.log(SyslogMessage)  
com.protomatter.syslog
  10,000 84,044 1,979 40,411 10,002 FileLog.java  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 96

5.2.7 General Performance Metrics 
ITA Logging framework was run through a performance testing harness to determine system-level 
performance metrics for the logger. The harness tested each major  operation independently and the 
system as a whole, in single-threaded and multithreaded environments. That proves extremely useful 
when developing custom loggers, policies, and formatters. The test was run, multithreaded, on a Compaq 
Deskpro with an Intel 600 MHz Pentium III processor, running WindowsNT 4.0 and JDK 1.3.  the test 
yielded the following performance numbers: 

Operation Average Time Calls Per Second 

Policy check (no channel check) 0.1 µs 8.2 million 

Policy check (with channel check) 1.0 µs 982,000 

Message format 11.9 µs 90,900 

Aggregate Syslog.log() call, including file write 46.7 µs 21,400 

 

ITA Logging performance statistics from Intel desktop test machine 

As the chart above indicates, the ITA logging framework has strong performance characteristics and is 
capable of performing thousands of logging operations a second, which should meet the needs of most 
applications.  Its tiered architecture of policy checkers, formatters, and loggers ensures that the only 
processing that occurs is what is absolutely necessary for an operation.  

5.3 User Guide 

5.3.1 Introduction 
5.3.1.1 Purpose 

This section provides a high-level summary, feature list, and usage of the Integrated Technical 
Architecture (ITA) standard Java Logging Framework.  The logging framework is part of a suite of 
frameworks provided to SFA applications by the ITA initiative.  The goal of the ITA initiative is to 
promote code reuse, standardization, and application of best practices across all SFA system development 
projects.   

5.3.1.2 Intended audience 

This section is intended for ITA and SFA application programmers who need to understand the ITA 
Logging framework in order to use this framework in their application. 

5.3.1.3 Background 

The ITA custom logging feature set is implemented using an SFA-customized version of the Protomatter 
logging toolkit called Syslog. This toolkit is provided free for distribution through the Open Source 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 97

Software group, is licensed under the GNU Library General Public License Version 2, and is free for both 
commercial and non-commercial use.  Specific terms of the license are available at 
http://www.gnu.org/copyleft/lgpl.html.  The code has been modified from its initial state and the 
additional information is provided in this document to aid developers in using this framework for SFA 
projects. 

5.3.1.4 Scope 

This section covers installation, configuration, and features of the ITA logging framework.  While the 
logging framework is usually used with the exception handling framework, the exception handling 
framework is not covered in this section.  Consult the exception handling User Guide for more 
information on this framework. 

5.3.1.5 Assumptions 

It is assumed that the logging framework will function in a J2EE application server environment.  As the 
current production server for SFA is IBM’s WebSphere 3.5, the framework will be compiled using its 
required JDK version 1.2.2.  It should also work with the current JavaServer Pages (1.1), Java Servlet (2.2), 
Java Messaging Service (1.0.1), and Java Database Connectivity (2.0) specifications for this server.  It will 
be built and tested on Windows NT 4.0 and Sun Solaris 2.6 operating systems. 

5.3.2 Description 
5.3.2.1 Overview 

The ITA Logging framework enhances the current logging ability of the ITA Web Application servers 
(specifically WebSphere), by allowing programmers to dynamically set logging and tracing functionality 
without modifying tested source code. The Logging Framework also allows log formatting standards to 
be developed and enforced to ensure proper information is gathered if a failure occurs. 

5.3.2.2 Features 

The ITA logging framework is not tied to any specific application server.  The ITA logging framework 
provides the following features: 

• Simple logging API  
• Background logging (Configurable)  
• Multiple message severities  
• Logs the name of the thread that issued the message (Configurable)  
• Logs the name of the host that issued the message (Configurable)  
• Arbitrary log channel names  
• Configuration can be modified on-the-fly while the system is running  
• A running configuration can be written to XML for re-load later  
 
5.3.2.3 Main Concepts 

The Logging framework allows the programmer to log messages easily through a simple API.  The 
Logging framework can be used as a debugging tool during development and as a troubleshooting tool 
when the application goes into production.   During development and testing, the messages may be 
simply sent to the console where the application is running or to a single log file. When the system is 
moved into production, log messages can be split up by severity levels (Fatal messages may result in 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 98

someone being paged, for instance) and log files may be rotated every night and archived. These kinds of 
configuration changes do not require changes to the code and can be made while the system is running.  
Detailed information on the logging framework can be found on the Logging design document.  

5.3.3 Installation  
5.3.3.1 Software requirements 

The logging framework is J2EE compliant.  The framework requires JDK 1.2  (recommended).  It also 
works with JDK 1.3.  

Operating System:  The ITA team will test the logging framework in the following operating Systems:  
Windows NT 4.0 and Solaris 2.6 

Application Server:  The ITA team will test the logging framework in the WebSphere Application Server 
3.5.  There is not anything in the logging package that will tie the framework to a particular application 
server. 

ITA Logging Package:  The ITA logging package should include the following jar files:       

• protomatter-1_1_5.jar 
• jakarta-oro-2.0.1.jar 
• jdom-B6.jar 
• xerces.jar 
• utility.jar 
• xml.jar 
• rcs_logging_v1.5.jar 
 

5.3.3.2 Installation procedures 

Copy all of the above files in a directory (eg /www/dev/rcs/jars). 

5.3.4 Configuration 
5.3.4.1 Add the Jar files on the classpath 

The logging package needs to be added in WebSphere classpath.  The following steps show how to add 
the classpath on WebSphere.  Bring up the WebSphere admin console and select your application server 
on the console.  Stop your application server Click on the ‘General’ Tab and add the following line in the 
Command Line Arguments- classpath /www/dev/rcs/jars/.  Restart your application server. 

5.3.4.2 Add the StartupRcs.jar on the classpath 

Due to the fact that multiple applications can use the same ITA Reusable Common Services (RCS), it is 
beneficial to configure and launch a startup class that configures and starts any ITA RCS Services within 
an Application Server. This is accomplished by using WebSphere’s ServiceInitializer interface. By 
specifying the name of the Startup Class as part of the ServiceInitializer command line argument for the 
Application Server, WebSphere will run the class as the last action it does in an Application Server startup 
or shutdown. An example is:  

-Dcom.ibm.ejs.sm.server.ServiceInitializer=<class>[,<class>]... 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 99

 
where each <class> is one of the startup classes. 

  An example at SFA of this is the ITA Logging service. The logging service actually configures itself to the 
parameters specified within an XML configuration file (rcs.xml). The ITA RCS Startup class reads the 
XML file and configures the logging service upon startup of the Application Server.  The StarupRcs class 
code can be found on the ‘Sample code’ section of this document.   

To enable the RCS startup class the following steps need to be taken. 

1. The StartupRcs.jar file needs to be placed within the classpath of the Application Server..  Bring the 
WebSphere Admin console up and select your application server.  Stop your application server.  Click 
on the ‘General’ Tab and add the path where StartupRcs.jar is located in the Command Line 
Arguments.   Restart your application server 

2. Add the following line in the Command Line Argument  

-Dcom.ibm.ejs.sm.server.ServiceInitializer=gov.ed.sfa.ita.common.StartupRcs 

5.3.4.3 XML configuration file 

The logging framework is configured by the xml configuration file.  The xml file, rcs.xml, configures the 
loggers.  The developer can configure the location of logs (file, console etc.), channel, thread, and date via 
the logging configuration file.  Below is a sample of a logging configuration file.  Details about the logging 
configuration file can be found at the following website: 

http://protomatter.sourceforge.net/1.1.5/javadoc/com/protomatter/syslog/syslog-whitepaper.html 

The developer needs to set up a variable for the xml configuration file on the WebSphere’s 
Admin console.  Add the following line in the Command Line Argument 
 
-D Syslog.config.xml=<location of the logging configuration file eg. C:\rcs.xml> 
 
 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 100

The following is a sample configuration file (rcs.xml) 
 

<?xml version="1.0" encoding="UTF-8"?> 
<Syslog defaultMask="INFO" backgroundLogging="false"> 
<Logger class="com.protomatter.syslog.FileLog" name="rcs_sample"> 
 <fileName>d:\rcs_sample.log</fileName> 
 <autoFlush>true</autoFlush> 
  <stream>System.out</stream> 
  <Policy class="com.protomatter.syslog.SimpleLogPolicy"> 
 <channels>ALL_CHANNEL</channels> 
 <logMask>INHERIT_MASK</logMask> 
   </Policy> 
   <Format class="com.protomatter.syslog.SimpleSyslogTextFormatter"> 
 <showChannel>false</showChannel> 
 <showThreadName>false</showThreadName> 
 <showHostName>false</showHostName> 
 <dateFormat>HH:mm:ss MM/dd</dateFormat> 
 <dateFormatCacheTime>1000</dateFormatCacheTime> 
 <dateFormatTimeZone>America/New_York</dateFormatTimeZone> 
   </Format> 
</Logger> 
</Syslog> 

 
The following sample logs the message to a console. 
 

<?xml version="1.0" encoding="UTF-8"?> 
<Syslog defaultMask="INFO" backgroundLogging="false"> 
<Logger class=”com.protomatter.syslog.SimpleSyslogTextFormatter”> 
 <autoFlush>true</autoFlush> 
  <stream>System.out</stream> 
  <Policy class="com.protomatter.syslog.SimpleLogPolicy"> 
 <channels>ALL_CHANNEL</channels> 
 <logMask>INHERIT_MASK</logMask> 
   </Policy> 
   <Format class="com.protomatter.syslog.SimpleSyslogTextFormatter"> 
 <showChannel>false</showChannel> 
 <showThreadName>false</showThreadName> 
 <showHostName>false</showHostName> 
 <dateFormat>HH:mm:ss MM/dd</dateFormat> 
 <dateFormatCacheTime>1000</dateFormatCacheTime> 
 <dateFormatTimeZone>America/New_York</dateFormatTimeZone> 
   </Format> 
</Logger> 
</Syslog> 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 101

5.3.5 Usage Scenarios 
5.3.5.1 Using Logging Framework to a log simple text message 

First, the developers need to import the ITA logging package in their application code (i.e. import 
gov.sfa.ed.ita.logging.*).  The developers need to call the log method of the Syslog class to do all their 
logging.  The log method has the following format. 

Syslog.log(LogTest.class, LOG_CHANNEL, “This is a test message” , null , Syslog.INFO); 

where LogTest.class is the name of the class where log method is called,                  LOG_CHANNEL is the 
name of the channel,                                                                                         “This is test message” – takes 
String or Object – used to log the detailed message,                                                                                     takes 
an object but here we have a null value ,                                                                                    Syslog.INFO is 
the severity level of the log message. 

Output of the above message will be as follows: 

13:36:07 08/22 [INFO] LogTest   This is a test message 

5.3.5.2 Using Logging Framework to log a message with different levels 

The developers need to import the ITA logging package in their application code (i.e. import 
gov.sfa.ed.ita.logging.*).  The developers need to call the log method of the Syslog class to do all their 
logging.  The log method has the following format. 

Object m_obj = new Object(); 

Syslog.log(LogTest.class, LOG_CHANNEL, “This is an informaiton test message” , Obj , Syslog.INFO); 

Syslog.log(LogTest.class, LOG_CHANNEL, “This is a debug test message” , Obj , Syslog.DEBUG); 

Syslog.log(LogTest.class, LOG_CHANNEL, “This is a warning test message” , Obj , Syslog.WARNING); 

Syslog.log(LogTest.class, LOG_CHANNEL, “This is an error  test message” , Obj , Syslog.ERROR); 

Syslog.log(LogTest.class, LOG_CHANNEL, “This is a fatal test message” , Obj , Syslog.FATAL); 

where LogTest.class is the name of the class where log method is called,  LOG_CHANNEL is the name of 
the channel.  “This is a warning test message” – takes String or Object – used to log the detailed message  
Obj is an object, Syslog.INFO, Syslog.DEBUG, Syslog.WARNING, Syslog.ERROR, and Syslog.FATAL are 
the severity level of the log message. 

Output of the above message will be as follows: 

13:36:07 08/22 [INFO] LogTest   This is an information test message java.lang.Object 13:36:07 08/22 
[DBUG] LogTest   This is a debug test message  java.lang.Object  13:36:07 08/22 [WARN] LogTest   This is 
a warning test message  java.lang.Object 13:36:07 08/22 [EROR] LogTest   This is an error test message  
java.lang.Object 13:36:07 08/22 [FTAL] LogTest.  This is a fatal test message java.lang.Object 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 102

5.3.6 Sample Code 
The following sample code shows the different ways to use the ITA logging framework.   

package gov.ed.sfa.ita.logging.examples; 

import java.io.*; 

import gov.ed.sfa.ita.logging.Syslog; 

/** 
 * LogTest:  This class is used to test the ITA Syslog methods.  
 * Creation date: (8/10/01 3:25:49 PM) 
 * @author: Roshani Bhatt 
 */ 
public class LogTest { 
/** 
 * LogTest constructor  
 */ 
public LogTest() { 
 super(); 
} 
/** 
 * This method test all the ITA syslog class methods. 
 * Creation date: (8/3/01 3:44:50 PM) 
 * @param args java.lang.String[] 
 */ 
 public static void main(String[] args)  
 { 
    Object m_obj = new Object(); 
    //testing canLog method 
    boolean b1 = Syslog.canLog(Syslog.DEBUG); 
    System.out.println("CanLog debug test produces " + b1); 
    boolean b2 = Syslog.canLog(Syslog.INFO); 
    System.out.println("CanLog info test produces " + b2); 
        
     //Testing log method     
     Syslog.log(LogTest.class, null, null, null, Syslog.INFO); 
     Syslog.log(LogTest.class, "RCS_Logging", null, null, 
Syslog.INFO); 
     Syslog.log(LogTest.class, "RCS_Logging", "This is an INFO 
message", null, Syslog.INFO); 
    Syslog.log(LogTest.class, "RCS_Logging", "This is an INFO 
message", m_obj, Syslog.INFO); 
    Syslog.log(LogTest.class, "RCS_Logging", "This is a WARNING 
message", m_obj,Syslog.WARNING); 
     Syslog.log(LogTest.class, "RCS_Logging", "This is an DEBUG 
message", m_obj,Syslog.DEBUG); 
    Syslog.log(LogTest.class, "RCS_Logging", "This is an ERROR 
message", m_obj,Syslog.ERROR); 
     Syslog.log(LogTest.class, "RCS_Logging", "This is an FATAL 
message", m_obj,Syslog.FATAL); 

}} 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 103

The following is a StartupRcs sample code. 

package gov.ed.sfa.ita.common; 

import com.protomatter.syslog.*; 
import javax.naming.*; 
import java.io.*; 
import java.util.*; 
/** 
 * Insert the type's description here. 
 * Creation date: (7/31/2001 8:01:48 PM) 
 * @author: Administrator 
 */ 
public class StartupRcs implements 
com.ibm.ejs.sm.server.ServiceInitializer { 
 private static boolean s_configured = false; 
/** 
 * StartupRcs constructor comment. 
 */ 
public StartupRcs() { 
 super(); 
} 
/** 
 * initialize method comment. 
 */ 
public void initialize(Context arg1) throws Exception { 
startupSyslog(); 
} 
/** 
 * Insert the method's description here. 
 * Creation date: (7/31/2001 11:06:44 PM) 
 */ 
private void startupSyslog() { 
    try { 
        if (s_configured) { 
         System.out.println("StartupRcs: Found the Syslog variable 
already configured "); 
            return; 
        } 
        this.s_configured = true; 
        // get the path to the config file from the 
        // "Syslog.config.xml" system property. 
        String xmlConfigFile = System.getProperty("Syslog.config.xml"); 
        if (xmlConfigFile == null) { 
         System.out.println("StartupRcs: The xmlConfigFile System 
Property is null "); 
            return; 
        } 
        System.out.println("StartupRcs: Configuring Syslog from \"" + 
xmlConfigFile+"\""); 
        Syslog.configure(new File(xmlConfigFile)); 
        Iterator loggers = Syslog.getLoggers(); 
        while (loggers.hasNext()) { 
         Syslogger logger = (Syslogger)loggers.next(); 
         System.out.println("StartupRcs: logger \"" + 
logger.getName()  + "\" is a " + logger.getClass().getName() ); 
        } }catch (Exception x) { 
        return; 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 104

    } 
         
    return; 
} 
/** 
 * terminate method  
 */ 
public void terminate(Context arg1) throws Exception { 
     Syslog.shutdown(); 
     } 
 
 

5.3.7 Resources 
The following resources have more information about the logging service. 

• Protomatter site:  http://www.protomatter.com 

• ITA Logging Design Document 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 105

 

6 RCS – Persistence Framework 
The ITA persistence framework provides a transparent and flexible mapping of the business objects to 
relational database tables.  It is transparent in that once the business objects and their mappings are 
defined, application developers do not need to have any knowledge of the underlying relational database 
tables.  It is flexible in that if the underlying relational database model changes, the business object model 
does not have to change with it – a change in the mapping layer is all that should be required.  The 
framework is made up of several components working together: 

• Domain Component 
• Unit of Work Component 
• Result Set Component 
• Business Mapper Component 
• Business Object Component 
• Persistable Object Manager (POM) Component 
 
The goal of this development was to provide a simple yet robust persistence framework that could easily 
be utilized by any SFA development team building applications in Java, or more specifically on the 
WebSphere Application Server.  It should be noted, however, that while the design of the persistence 
framework does incorporate the best practices as recommended in WebSphere documentation, there is 
nothing in this package that ties it to WebSphere.  An important part of any project, database access is one 
of the most time-consuming coding tasks and one of the most resource intensive components of a 
deployed application.  Correct database access coding is critical to the performance and maintainability of 
an application.  However, without a framework in place, each developer on a project will code database 
access as he or she sees fit (and best knows how), often leading to a haphazard implementation and 
duplication of effort. As such, object persistence and database access should be addressed with care and 
forethought. 

 

6.1 Testing Conditions & Results 

6.1.1 Automated Testing 
Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

1 constructor with 
no arguments 

SFADomainTests testSFADomain SFADomain SFADomain() SFADomain 
object is created 

 

2 constructor with 
a string 
argument 

SFADomainTests testSFADomain SFADomain SFADomain (String 
pDataSourceName) 

SFADomain 
object is created, 
setting the 
dataSourceNam
e field to 
"testDataSource" 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 106

Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

3 constructor with 
three string 
arguments 

SFADomainTests testSFADomain SFADomain SFADomain (String 
pDataSourceName, 
String pUserName, 
String pPassword) 

SFADomain 
object is created, 
setting the 
dataSourceNam
e field to 
"testDataSource"
, userName to 
"testUserName", 
and password to 
"testPassword" 

 

4 set and get of 
dataSourceNam
e field 

SFADomainTests testDataSourceNa
me 

SFADomain setDataSourceName 
getDataSourceName 

the string 
"testDataSource" 
is set and 
retrieved 

 

5 set and get of 
userName field 

SFADomainTests testUserName SFADomain setUserName 
getUserName 

the string 
"testUserName" 
is set and 
retrieved 

 

6 set and get of 
password field 

SFADomainTests testPassword SFADomain setPassword 
getPassword 

the string 
"testPassword" 
is set and 
retrieved 

 

7 constructor 
called with 
correct data 
source name, 
user name, and 
password 

SFAUnitOfWorkTe
sts 

testSFAUnitOfWor
k 

SFAUnitOfW
ork 

SFAUnitOfWork(Strin
g pDataSourceName, 
String pUserName, 
String pPassword) 

SFAUnitOfWork 
is created with 
connection to the 
database 

 

8 constructor 
called with 
invalid data 
source name 

SFAUnitOfWorkTe
sts 

testSFAUnitOfWor
k 

SFAUnitOfW
ork 

SFAUnitOfWork(Strin
g pDataSourceName, 
String pUserName, 
String pPassword) 

SFAUnitOfWork 
is created, but 
without a 
connection to the 
database.  An 
SFAException is 
thrown. 

 

9 constructor 
called with 
invalid username 

SFAUnitOfWorkTe
sts 

testSFAUnitOfWor
k 

SFAUnitOfW
ork 

SFAUnitOfWork(Strin
g pDataSourceName, 
String pUserName, 
String pPassword) 

SFAUnitOfWork 
is created, but 
without a 
connection to the 
database.  An 
SFAException is 
thrown. 

 

10 constructor 
called with 
correct data 
source name 
and user name, 
but invalid 
password 

SFAUnitOfWorkTe
sts 

testSFAUnitOfWor
k 

SFAUnitOfW
ork 

SFAUnitOfWork(Strin
g pDataSourceName, 
String pUserName, 
String pPassword) 

SFAUnitOfWork 
is created, but 
without a 
connection to the 
database.  An 
SFAException is 
thrown. 

 

11 reference to 
JDBC 
connection 
obtained when 
UnitOfWork 
properly created 

SFAUnitOfWorkTe
sts 

testGetConnection SFAUnitOfW
ork 

getConnection() valid JDBC 
connection 
obtained 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 107

Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

12 reference to 
JDBC 
connection not 
obtained when 
UnitOfWork is 
invalid 

SFAUnitOfWorkTe
sts 

testGetConnection SFAUnitOfW
ork 

getConnection() null returned  

13 executeQuery 
successful for 
correctly 
constructed SQL 
query 

SFAUnitOfWorkTe
sts 

testExecuteQuery SFAUnitOfW
ork 

executeQuery() SFAResultSet 
returned with 
appropriate data 

 

14 executeQuery 
unsuccessful for 
correctly 
constructed SQL 
query 

SFAUnitOfWorkTe
sts 

testExecuteQuery SFAUnitOfW
ork 

executeQuery() SFAException 
raised, no data 
returned 

 

15 executeUpdate 
successful for 
correctly 
constructed SQL 
update 
statement 

SFAUnitOfWorkTe
sts 

testExecuteUpdate SFAUnitOfW
ork 

executeUpdate() number of rows 
updated is 
returned; 
matches the 
criteria specified 
for the query 

 

16 executeUpdate 
updates no rows 
for correctly 
constructed SQL 
update 
statement 

SFAUnitOfWorkTe
sts 

testExecuteUpdate SFAUnitOfW
ork 

executeUpdate() number of rows 
updated is 0; 0 is 
the returned 
value 

 

17 executeUpdate 
unsuccessful for 
incorrectly 
constructed SQL 
query 

SFAUnitOfWorkTe
sts 

testExecuteUpdate SFAUnitOfW
ork 

executeUpdate() no rows updated; 
SFAException is 
thrown 

 

18 executeUpdate 
successful for 
correctly 
constructed SQL 
update 
statement and 
abort() called 

SFAUnitOfWorkTe
sts 

testAbort SFAUnitOfW
ork 

executeUpdate(), 
abort() 

rows updated 
matches the 
criteria specified 
for the query, but 
when abort is 
called the 
updates are 
rolled back 

 

19 executeUpdate 
successful for 
correctly 
constructed SQL 
update 
statement and 
commit() called 

SFAUnitOfWorkTe
sts 

testCommit SFAUnitOfW
ork 

executeUpdate(), 
commit() 

rows updated 
matches the 
criteria specified 
for the query, 
and when 
commit is called 
the updates are 
set in the 
database 

 

20 executeUpdate 
successful for 
correctly 
constructed SQL 
update 
statement and 
end() called 

SFAUnitOfWorkTe
sts 

testEnd SFAUnitOfW
ork 

executeUpdate(), 
end() 

rows updated 
matches the 
criteria specified 
for the query, 
and when end is 
called the 
updates are set 
in the database 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 108

Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

21 SFAResultSet 
constructed 
successfully 

SFAResultSetTest testSFAResultSet SFAResultS
et 

SFAResultSet(Record
Set rs) 

SFAResultSet 
constructed from 
executeQuery 
method of 
SFAUnitofWork 

 

22 getBoolean 
successful for 
valid input 
column name 

SFAResultSetTest testGetBoolean SFAResultS
et 

getBoolean(String) correct value 
returned for row 
(row checked by 
verifying against 
row id) 

 

23 getBoolean fails 
for invalid input 
column name 

SFAResultSetTest testGetBoolean SFAResultS
et 

getBoolean(String) value not 
returned; 
SFAException 
raised 

 

24 getDate 
successful for 
valid input 
column name 

SFAResultSetTest testGetDate SFAResultS
et 

getDate(String) correct value 
returned for row 
(row checked by 
verifying against 
row id) 

 

25 getDate fails for 
invalid input 
column name 

SFAResultSetTest testGetDate SFAResultS
et 

getDate(String) value not 
returned; 
SFAException 
raised 

 

26 getFloat 
successful for 
valid input 
column name 

SFAResultSetTest testGetFloat SFAResultS
et 

getFloat(String) correct value 
returned for row 
(row checked by 
verifying against 
row id) 

 

27 getFloat fails for 
invalid input 
column name 

SFAResultSetTest testGetFloat SFAResultS
et 

getFloat(String) value not 
returned; 
SFAException 
raised 

 

28 getInt successful 
for valid input 
column name 

SFAResultSetTest testGetInt SFAResultS
et 

getInt(String) correct value 
returned for row 
(row checked by 
verifying against 
row id) 

 

29 getInt fails for 
invalid input 
column name 

SFAResultSetTest testGetInt SFAResultS
et 

getInt(String) value not 
returned; 
SFAException 
raised 

 

30 getLong 
successful for 
valid input 
column name 

SFAResultSetTest testGetLong SFAResultS
et 

getLong(String) correct value 
returned for row 
(row checked by 
verifying against 
row id) 

 

31 getLong fails for 
invalid input 
column name 

SFAResultSetTest testGetLong SFAResultS
et 

getLong(String) value not 
returned; 
SFAException 
raised 

 

32 getObject 
successful for 
valid input 
column name 

SFAResultSetTest testGetObject SFAResultS
et 

getObject(String) correct value 
returned for row 
(row checked by 
verifying against 
row id) 

 

33 getObject fails 
for invalid input 
column name 

SFAResultSetTest testGetObject SFAResultS
et 

getObject(String) value not 
returned; 
SFAException 
raised 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 109

Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

34 getString 
successful for 
valid input 
column name 

SFAResultSetTest testGetString SFAResultS
et 

getString(String) correct value 
returned for row 
(row checked by 
verifying against 
row id) 

 

35 getString fails for 
invalid input 
column name 

SFAResultSetTest testGetString SFAResultS
et 

getString(String) value not 
returned; 
SFAException 
raised 

 

36 next moves 
recordset to next 
row 

SFAResultSetTest testNext SFAResultS
et 

next true returned; 
recordset moved 
to next row; 
validated by 
checking the 
next row id 
against the 
database 

 

37 next called at the 
end of the 
recordset 

SFAResultSetTest testNext SFAResultS
et 

next false returned; 
recordset not 
moved 

 

38 close called and 
succesful 

SFAResultSetTest testClose SFAResultS
et 

close nothing returned; 
no exceptions 
raised 

 

39 close called and 
fails 

SFAResultSetTest testClose SFAResultS
et 

close exception raised 
because 
recordset is 
already closed 

 

40 constructor for 
POM successful 
with Domain 

SFAPersistableObj
ectManagerTest 

testSFAPersistable
ObjectManager 

SFAPersista
bleObjectMa
nager 

SFAPersistableObject
Manager(SFADomain 
domain) 

SFAPersistable
ObjectManager 
created 

 

41 constructor for 
POM successful 
with UnitOfWork 

SFAPersistableObj
ectManagerTest 

testSFAPersistable
ObjectManager 

SFAPersista
bleObjectMa
nager 

SFAPersistableObject
Manager(SFAUnitOf
Work uow) 

SFAPersistable
ObjectManager 
created 

 

42 addObject 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testAddObject SFAPersista
bleObjectMa
nager 

addObject(String sql, 
Vector vals) 

row(s) added to 
database 

 

43 getObject 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testGetObject SFAPersista
bleObjectMa
nager 

getObject(ISFAPersis
tableMapper ipm, 
String query, Vector 
vals) 

data retrieved 
from database 

 

44 getObjects 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testGetObjects SFAPersista
bleObjectMa
nager 

getObjects(ISFAPersi
stableMapper ipm, 
String query, Vector 
vals) 

rows retrieved 
from database, 
returned as 
SFAResultSet 

 

45 getObjectsAsHa
shtable 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testGetObjectsAsH
ashtable 

SFAPersista
bleObjectMa
nager 

getObjectsAsHashtab
le(ISFAPersistableMa
pper ipm, String 
query, Vector vals) 

rows retrieved 
from database, 
returned as 
hashtable 

 

46 removeObject 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testRemoveObject SFAPersista
bleObjectMa
nager 

removeObject(String 
query, Vector vals) 

row(s) deleted 
from database 

 

47 removeObjects 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testRemoveObjects SFAPersista
bleObjectMa
nager 

removeObjects(String 
query, Vector vals) 

rows deleted 
from database 

 

48 updateObject 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testUpdateObject SFAPersista
bleObjectMa
nager 

updateObject(String 
query, Vector vals) 

row(s) updated 
in database 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 110

Condition 
Number 

Detailed 
Condition 

Test Class Name Test Class 
Method 

Class Name Method Name Results Data File 
Name 

49 updateObjects 
successful for 
query string and 
parameters 

SFAPersistableObj
ectManagerTest 

testUpdateObjects SFAPersista
bleObjectMa
nager 

updateObjects(String 
query, Vector vals) 

row(s) updated 
in database 

 

50 abortTransaction 
successful 

SFAPersistableObj
ectManagerTest 

testAbortTransactio
n 

SFAPersista
bleObjectMa
nager 

abortTransaction() updated started, 
but no rows 
changed 

 

51 commitTransacti
on successful 

SFAPersistableObj
ectManagerTest 

testCommitTransac
tion 

SFAPersista
bleObjectMa
nager 

commitTransaction() update started 
and completed 

 

52 end Transaction 
successful 

SFAPersistableObj
ectManagerTest 

testEndTransaction SFAPersista
bleObjectMa
nager 

endTransaction() update started 
and completed 

 

 

6.2 Performance Analysis 

6.2.1 Summary 
A careful review of the Persistence framework revealed no performance deficiencies in its design or code.  
The framework is very lightweight, imposing minimal overhead on what could be accomplished with a 
straight JDBC implementation of database access.  In fact, in many cases the code would most likely 
outperform straight JDBC access because the framework supports best practices for database access that 
might be overlooked by Java developers who are inexperienced with JDBC.  Performance metrics further 
underline the capabilities of the framework. 

Some areas of consideration were noted, however.  These areas did not involve deficiencies in the 
framework itself.  Instead it involved framework configurations and usages that would lead to slow 
performance.  Two areas in particular were business object design and SQL coding.  Business objects can 
contain validation code;  therefore poorly designed code can lead to slow object retrievals and updates.  
While it is good to have objects validated before they are persisted, care should be taken to make the 
objects as lightweight as possible.  Mapping objects contain all of the SQL code used to persist objects to 
the database;  therefore poorly designed SQL code and database design would have an adverse impact on 
framework performance.  For example, doing object retrievals on a non-indexed field would require a full 
table scan for each object retrieved. 

These issues are not unique to the Persistence framework, however.  Poor validation and SQL code are 
common areas of concern when writing database access code.  The ITA Persistence framework actually 
serves to minimize the occurrence of these issues.  The design of the framework results in that: 

• JDBC code is written once, delivered in the framework itself 
• Validation code is written once, by the lead developer who is most skilled in that area 
• SQL code is written once, by the lead developer who is most skilled in that area 
 

Therefore, a properly implemented Persistence framework should not only speed development, but 
improve the quality and performance of the code. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 111

6.2.2 Background 
The framework is fairly lightweight; it incurs a minimal performance penalty over a straight JDBC 
implementation.  As described in the design document and user’s guide, however, the benefits from a 
object based design for data access more than make up for the small performance hit.  The impact of the 
various objects on the overall performance is outlined below: 

The Domain component has no effect; it simply stores connection information to the database and is used 
only once, when the connection is established. 

The Unit of Work component contains all of the JDBC code for the framework.  It is very straightforward 
code, uses standard and accepted JDBC practices for database access. 

The Result Set component is a light wrapper of the JDBC ResultSet.   Its main function is to format values 
pulled from the ResultSet in appropriate Java datatypes. 

The Business Mapper component contains all of the SQL code for database interaction; poorly designed 
SQL code could lead to degradation in performance. 

The Business Object component is the Java representation of the data in the database tables.  It may also 
contain validation code; a poorly designed business object could lead to degradation in performance. 

The POM component uses all of the above objects to coordinate persistence activities.  The code there is 
provided with the framework and does not need to be modified by application developers.  It is also 
fairly lightweight and straightforward and should incur no appreciable performance hit. 

6.2.3 Testing Environment 
The testing harness was run on a standard SFA developer workstation.  The hardware consisted of a 
Compaq Deskpro with a single 600 MHz Pentium III processor and 512 MB of RAM.  The machine ran 
Windows NT 4.0 Service Pack 6.  The execution environment was IBM’s WebSphere application server, 
version 3.5.3, running on IBM’s JDK 1.2.2.  This same machine was also running a full instance of an 
Oracle database, version 8.0.6.0.0.  While tests were run, no other applications were loaded into memory, 
and the system was not interacted with.  This was done in order to leave all resources available to the test 
harness, and eliminate the possibility of unexplained behavior in the tables of results. 

6.2.4 Testing Configuration 
There is very little configuration that needs to be done for the ITA Persistence framework itself.  The only 
system level property that needs to be configured is the JDBC DataSource name.  This is done in the 
WebSphere administration console. 

JProbe needs to be configured to be able to gather metrics from the framework as it ran in the IBM 
Websphere environment.  There are three components to this configuration.  One is the profleWAS30.jpl 
file, which lists all profiling parameters in an XML file.  These parameters are normally set in the JProbe 
GUI, but since a server is being monitored, they are set through a file interface.  The text of the 
configuration file is provided below: 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 112

<?xml version="1.0" encoding="UTF-8" ?> 
<!DOCTYPE jpl SYSTEM "jpl.dtd" > 
 
<jpl version="1.5"> 
 <program type="application"> 
  <application 
   args="" 
   working_dir="" 
   source_dir="" 
   classname=""> 
   <classpath> 
    <classpath.path 
location="%CLASSPATH%"/> 
   </classpath> 
  </application> 
  <applet 
   working_dir="" 
   source_dir="" 
   htmlfile="" 
   main_package=""> 
   <classpath> 
    <classpath.path 
location="%CLASSPATH%"/> 
   </classpath> 
  </applet> 
  <serverside 
   suggested_filters="" 
   id="" 
   server_dir="" 
   prepend_to_vm_args="" 
   source_dir="" 
   classname="" 
   main_package="" 
   exclude_server_classes="true" 
   args="" 
   working_dir="" 
   prepend_to_classpath=""> 
   <classpath> 
    <classpath.path 
location="%CLASSPATH%"/> 
   </classpath> 
  </serverside> 
 </program> 
 <vm 
  snapshot_dir="C:\Temp" 
  location="E:\WebSphere\AppServer\jdk\bin\java.exe" 
  args="" 
  type="java2" 
  use_jit="true"/> 
 <viewer 
  socket=":4444" 
  type="local"/> 
 <analysis type="profile"> 
  <performance 
   record_from_start="true" 
   timing="elapsed" 
   track_natives="true" 
   final_snapshot="true" 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 113

   granularity="method"> 
   <performance.filter 
    visibility="visible" 
    methodmask="*" 
    enabled="true" 
    classmask="*" 
    time="ignore" 
    granularity="method"/> 
   <performance.filter 
    visibility="visible" 
    methodmask="*" 
    enabled="true" 
    classmask=".*" 
    time="track" 
    granularity="method"/> 
  </performance> 
  <heap 
   record_from_start="true" 
   no_stack_trace_limit="false" 
   final_snapshot="false" 
   max_stack_trace="4" 
   track_dead_objects="false"/> 
  <threadalyzer 
   record_from_start="true" 
   write_to_console="false"> 
   <deadlock_detection 
    enabled="true" 
    deadlock_and_exit="true" 
    report_stalls="false" 
    track_system_threads="false" 
    block_can_stall="false" 
    deadlock_threshold="2"/> 
   <deadlock_prediction 
    enable_hold_and_wait="false" 
    enable_lock_order="false" 
    lock_order_maintains_covers="true"/> 
   <data_race 
    ignore_volatile="false" 
    enable_happens_before="false" 
    no_stack_trace_limit="false" 
    enable_lock_covers="false" 
    max_stack_trace="1" 
    instrument_elements="false"/> 
   <visualizer 
    enabled="true" 
    visualization_level="1"/> 
   <threadalyzer.filter 
    visibility="invisible" 
    enabled="true" 
    classmask="*"/> 
   <threadalyzer.filter 
    visibility="visible" 
    enabled="true" 
    classmask=".*"/> 
  </threadalyzer> 
  <coverage 
   record_from_start="true" 
   final_snapshot="true" 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 114

   granularity="line"> 
   <coverage.filter 
    visibility="invisible" 
    methodmask="*" 
    enabled="true" 
    classmask="*"/> 
   <coverage.filter 
    visibility="visible" 
    methodmask="*" 
    enabled="true" 
    classmask=".*"/> 
  </coverage> 
 </analysis> 
</jpl> 

 

The other three configuration issues occur in WebSphere itself.  In the administration console, for the 
server being evaluated, (usually Default Server): 

1. The name must be changed to eliminate spaces – either Default_Server or DefaultServer is a good 
option 

2. The environment must include the following variables –  
EXECUTABLE=[directory where JProbe is installed]\jplauncher.exe EXECUTE=YES 

3. The command line arguments for the server should be updated to add  
-jp_input= <path_of_JProbe_logfile>/profileWAS30.jpl 

 

Consult the JProbe website (www.jprobe.com/j2ee) for more detailed instructions on integrating the 
testing environment with the IBM WebSphere application server. 

 

6.2.5 Testing Scenarios 
The persistence performance test focused on two usage scenarios for analysis.  The first was persistence of 
objects to the database, and the second was retrieval of objects from the database.  These usage scenarios 
cover all major components of the framework, and should provide a good indication of the general 
performance characteristics of the system.  

The updates and retrievals were both executed in runs of 1, 10, and 1000 iterations.  These were 
conducted to see if performance was linear or degraded as the load was increased.  This also improved 
the chances of spotting over-allocation or lack of freeing up objects. 

The model used was the OrderRequest Business Object and Mapper.  It is a very straightforward 
implementation but is a very real-world example of what the framework could be used to do.  The 
implementation of these objects was described in detail in the ITA Persistence User Guide (Section 6.3). 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 115

6.2.6 Analysis 
The analysis consists of three parts: 

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code to 
identify loitering object and over-allocation of objects.   

2. Garbage Collection: The garbage collector is a process that runs on a low priority thread.  When 
the JVM attempts to allocate an object but the Java heap is full, the JVM calls the garbage 
collector.  The garbage collector frees memory using some algorithm to remove unused objects.  
Examining the activities of the garbage collection will give a good indication of the performance 
impact of the garbage collector on the application. 

3. Code Efficiency: To identify any performance bottleneck due to inefficient code algorithms 

6.2.6.1 Memory (Heap) Usage 

The performance test utilized JProbe Profiler’s Memory Debugger to identify the parts of the framework 
that might be causing loitering objects.  This was accomplished by analysis of the Java heap.  The Runtime 
Heap Summary window can be used to view instance counts and information on allocating methods.  

The Heap Usage Chart below plots the size of the Java heap over the course of two distinct test runs.  The 
runs consist of an object update run and an object retrieval run.  Each graph captures heap usage from the 
startup and initialization of the WebSphere server through the end of the run.. The chart helps to 
visualize memory use in the Java heap. It displays the available size of the Java heap (in pink) and the 
used memory (in blue) over time. 

The first part of each chart indicates a rising graph.  A rising graph in these charts indicates that the core 
set of WebSphere application server objects are being initialized for use.  This is the expected behavior of 
the application server.   

Test runs were not initiated until the application server was fully initialized and had reached a steady 
state, indicated by a steady graph in the heap usage chart.  These steady graphs are visible roughly in the 
middle of the chart. 

The third part of the chart indicates a series of spikes.  Steep spikes in the Heap Usage Chart represent 
temporary objects being allocated and garbage collected. If the level of the troughs becomes higher over 
time, then not all the temporary objects are garbage collected.  As can be seen, the troughs for object 
updates remain steady over time, and while multiple objects are being created and destroyed, there do 
not appear to be any lingering objects.  The troughs for object retrievals appear to rise slightly at the end 
of the run, but that is just because the garbage collection did not occur at the end of the run.  As will be 
visible from the object usage charts on the following pages, all objects instantiated by the Persistence 
framework were released and garbage collected. 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 116

 

 

Figure 2.  Heap usage covering one object update test run. 

 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 117

 

Figure 3.  Heap usage covering one object retrieval test run. 

 

6.2.6.2 Garbage Collections 

The Garbage Monitor was used to identify the classes that are responsible for large allocations of short-
lived objects. It shows the cumulative results of successive garbage collections during the session. The 
Garbage Monitor shows only the top ten classes, representing the classes with the most instances garbage 
collected. During the session, the top ten classes will change as the number of garbage collected objects 
accumulates.  The list below is the final top ten, displaying cumulative objects created at the end of 
program execution. 

Each row identifies the class by package name, if any, and class name. The next columns state, in order, 
the number of garbage collected objects (GC’ed column) for the class, the number of instances remaining 
in the heap (Alive column), and the method that allocated the instances of the class (AllocatedAt column).  
The same class can appear more than once because more than one method allocated instances of the class. 

The charts below do not show any unexpected activity, or activity that would indicate a performance 
problem.  Most of the objects created are either strings, string buffers, or character arrays.  These numbers 
are in line with the framework requirements and expected behavior as it formats a large number of 
messages to write them to the file. 

 

Action: Update   Runs: 1 

Package Class GC’ed Alive Allocated At 
java.lang StringBuffer 9 0 SFAParser.getStatement 
java.lang String 4 2 SFAParameter.setParamType 
 char[] 4 2 SFAParameter.setParamType 
java.lang StringBuffer 4 0 SFAParser.getStringWrappedValue 
gov.ed.sfa.ita.
persistence 

SFAOracleParser 1 0 SFAPersistableObjectManager.getPar
ser 

gov.ed.sfa.ita.
persistence 

SFAUnitOfWork 1 0 SFAPersistableObjectManager.<init> 

 

Action: Update  Runs: 10 

Package Class GC’ed Alive Allocated At 
java.lang StringBuffer 90 0 SFAParser.getStatement 
java.lang String 40 2 SFAParameter.setParamType 
 char[] 40 2 SFAParameter.setParamType 
java.lang StringBuffer 40 0 SFAParser.getStringWrappedValue 
gov.ed.sfa.ita.
persistence 

SFAOracleParser 10 0 SFAPersistableObjectManager.getPar
ser 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 118

Package Class GC’ed Alive Allocated At 
gov.ed.sfa.ita.
persistence 

SFAUnitOfWork 1 0 SFAPersistableObjectManager.<init> 

 

Action: update  runs: 1000 

Package Class GC’ed Alive Allocated At 
java.lang StringBuffer 9000 0 SFAParser.getStatement 
java.lang String 4000 2 SFAParameter.setParamType 
 char[] 4000 2 SFAParameter.setParamType 
java.lang StringBuffer 4000 0 SFAParser.getStringWrappedValue 
gov.ed.sfa.ita.
persistence 

SFAOracleParser 1000 0 SFAPersistableObjectManager.getPar
ser 

gov.ed.sfa.ita.
persistence 

SFAUnitOfWork 1 0 SFAPersistableObjectManager.<init> 

 

Action:  Retrieve  Runs: 1 

Package Class GC’ed Alive Allocated At 
java.lang StringBuffer 3 0 SFAParser.getStatement 
java.lang String 1 0 SFAParameter.setParamType 
 char[] 1 0 SFAParameter.setParamType 
gov.ed.sfa.ita.
persistence 

SFAOracleParser 1 0 SFAPersistableObjectManager.getPar
ser 

java.lang StringBuffer 1 0 SFAParser.getStringWrappedValue 
gov.ed.sfa.ita.
persistence 

SFAResultSet 1 0 SFAUnitOfWork.executeQuery 

gov.ed.sfa.ita.
persistence 

SFAUnitOfWork 1 0 SFAPersistableObjectManager.<init> 

 

Action:  Retrieve  Runs: 10 

Package Class GC’ed Alive Allocated At 
java.lang StringBuffer 30 0 SFAParser.getStatement 
java.lang String 10 0 SFAParameter.setParamType 
 char[] 10 0 SFAParameter.setParamType 
gov.ed.sfa.ita.
persistence 

SFAOracleParser 10 0 SFAPersistableObjectManager.getPar
ser 

java.lang StringBuffer 10 0 SFAParser.getStringWrappedValue 
gov.ed.sfa.ita.
persistence 

SFAResultSet 10 0 SFAUnitOfWork.executeQuery 

gov.ed.sfa.ita.
persistence 

SFAUnitOfWork 1 0 SFAPersistableObjectManager.<init> 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 119

Action:  Retrieve  Runs: 1000 

Package Class GC’ed Alive Allocated At 
java.lang StringBuffer 3000 0 SFAParser.getStatement 
java.lang String 1000 0 SFAParameter.setParamType 
 char[] 1000 0 SFAParameter.setParamType 
gov.ed.sfa.ita.
persistence 

SFAOracleParser 1000 0 SFAPersistableObjectManager.getPar
ser 

java.lang StringBuffer 1000 0 SFAParser.getStringWrappedValue 
gov.ed.sfa.ita.
persistence 

SFAResultSet 1000 0 SFAUnitOfWork.executeQuery 

gov.ed.sfa.ita.
persistence 

SFAUnitOfWork 1 0 SFAPersistableObjectManager.<init> 

 

6.2.6.3 Code Efficiency 

There are nine efficiency metrics that can be collected in Jprobe — five basic metrics and four compound 
metrics. The basic metrics include Number of Calls, Method Time, Cumulative Time, Method Object 
Count, Cumulative Object Count. The compound metrics are averages per number of calls, including 
Average Method Time, Average Cumulative Time, Average Method Object Count, and Average 
Cumulative Object Count. Time is measured as elapsed time.  

The following list defines the nine performance metrics: 

• Number of Calls - The number of times the method was invoked. 
• Method Time - The amount of time spent executing the method, excluding time spent in its 

descendants. 
• Cumulative Time - The total amount of time spent executing the method, including time spent in its 

descendants but excluding time spent in recursive calls to descendants. 
• Method Object Count - The number of objects created during the method’s execution, excluding those 

created by its descendants. 
• Cumulative Object Count - The total number of objects created during the method’s execution, 

including those created by its descendants. 
• Average Method Time - Method Time divided by Number of Calls.  
• Average Cumulative Time - Cumulative Time divided by Number of Calls. 
• Average Method Object - Count Method Object Count divided by Number of Calls. 
 

The charts on the following pages serve to document the performance characteristics of the Persistence 
framework with the list of methods with the most calls.  The data was gathered on runs of 1,000 updates 
and 1,000 retrievals. This can serve as a basic indicator of processing resource utilization.  The list can be 
reviewed for unexpected activity or optimization opportunities.   

Unfortunately, it appears that for test run through an application server, data on time spent in methods, 
objects allocated in methods, etc., is unavailable.  While this data could be useful, it does not invalidate or 
hamper this analysis.  The data could be used to determine bottlenecks in the framework.  If the 
framework were performing poorly than this information would provide the first areas where 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 120

investigation would provide most benefit.  However, the raw performance data in the final section shows 
that framework performance is quite adequate, so therefore the data does not need to be investigated.  

As a result, the following charts serve to document the methods called in the persistence framework.  It 
does validate that the number of calls matches what would be expected for the number of runs conducted 
(1000). 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 121

Object Update Methods from the Persistence framework, ordered by number of calls: 

 

Name Package Calls Source 

SFAParameter.getValue() gov.ed.sfa.ita.persistence 8,000 SFAParameter.java 

SFAParser.getParamDelimiter() gov.ed.sfa.ita.persistence 8,000 SFAParser.java 

SFAParameter.<init>(String, String, char) gov.ed.sfa.ita.persistence 4,000 SFAParameter.java 

SFAParameter.getName() gov.ed.sfa.ita.persistence 4,000 SFAParameter.java 

SFAParameter.getParamType() gov.ed.sfa.ita.persistence 4,000 SFAParameter.java 

SFAParameter.setParamType(char) gov.ed.sfa.ita.persistence 4,000 SFAParameter.java 

SFAParameter.setValue(String) gov.ed.sfa.ita.persistence 4,000 SFAParameter.java 

SFAParser.getStringWrappedValue(SFAParameter) gov.ed.sfa.ita.persistence 4,000 SFAParser.java 

SFAParser.getWrappedValue(SFAParameter) gov.ed.sfa.ita.persistence 4,000 SFAParser.java 

SFAOracleParser.<init>(String) gov.ed.sfa.ita.persistence 1,000 SFAOracleParser.java 

SFAParser.<init>(String) gov.ed.sfa.ita.persistence 1,000 SFAParser.java 

SFAParser.getStatement() gov.ed.sfa.ita.persistence 1,000 SFAParser.java 

SFAPersistableObjectManager.addObject(String, 
Vector) 

gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 

SFAPersistableObjectManager.commitTransaction() gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 122

Name Package Calls Source 

SFAPersistableObjectManager.getParser(String) gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 

SFAPersistableObjectManager.getQuery(String, 
Vector) 

gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 

SFAQueryParser.<init>(String) gov.ed.sfa.ita.persistence 1,000 SFAQueryParser.java 

SFAQueryParser.processRawStatement() gov.ed.sfa.ita.persistence 1,000 SFAQueryParser.java 

SFAQueryParser.setParams(Vector) gov.ed.sfa.ita.persistence 1,000 SFAQueryParser.java 

SFAUnitOfWork.commit() gov.ed.sfa.ita.persistence 1,000 SFAUnitOfWork.java 

SFAUnitOfWork.executeUpdate(String) gov.ed.sfa.ita.persistence 1,000 SFAUnitOfWork.java 

SFADomain.<init>(String, String, String) gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFADomain.getDataSourceName() gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFADomain.getPassword() gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFADomain.getUserName() gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFAPersistableObjectManager.<init>(SFADomain) gov.ed.sfa.ita.persistence 1 SFAPersistableObjectManager.java 

SFAUnitOfWork.<init>(String, String, String) gov.ed.sfa.ita.persistence 1 SFAUnitOfWork.java 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 123

Object Retrieval Methods from the Persistence framework, ordered by number of calls: 

 

Name Package Calls Source 

SFAResultSet.getString(String) gov.ed.sfa.ita.persistence 4,000 SFAResultSet.java 

SFAParameter.getValue() gov.ed.sfa.ita.persistence 2,000 SFAParameter.java 

SFAParser.getParamDelimiter() gov.ed.sfa.ita.persistence 2,000 SFAParser.java 

SFAOracleParser.<init>(String) gov.ed.sfa.ita.persistence 1,000 SFAOracleParser.java 

SFAParameter.<init>(String, String, char) gov.ed.sfa.ita.persistence 1,000 SFAParameter.java 

SFAParameter.getName() gov.ed.sfa.ita.persistence 1,000 SFAParameter.java 

SFAParameter.getParamType() gov.ed.sfa.ita.persistence 1,000 SFAParameter.java 

SFAParameter.setParamType(char) gov.ed.sfa.ita.persistence 1,000 SFAParameter.java 

SFAParameter.setValue(String) gov.ed.sfa.ita.persistence 1,000 SFAParameter.java 

SFAParser.<init>(String) gov.ed.sfa.ita.persistence 1,000 SFAParser.java 

SFAParser.getStatement() gov.ed.sfa.ita.persistence 1,000 SFAParser.java 

SFAParser.getStringWrappedValue(SFAParam
eter) 

gov.ed.sfa.ita.persistence 1,000 SFAParser.java 

SFAParser.getWrappedValue(SFAParameter) gov.ed.sfa.ita.persistence 1,000 SFAParser.java 

SFAPersistableObjectManager.getObject(ISFA
PersistableMapper, String, Vector) 

gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 124

Name Package Calls Source 

SFAPersistableObjectManager.getParser(String
) 

gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 

SFAPersistableObjectManager.getQuery(String, 
Vector) 

gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 

SFAPersistableObjectManager.nextObject(SFA
ResultSet, ISFAPersistableMapper) 

gov.ed.sfa.ita.persistence 1,000 SFAPersistableObjectManager.java 

SFAQueryParser.<init>(String) gov.ed.sfa.ita.persistence 1,000 SFAQueryParser.java 

SFAQueryParser.processRawStatement() gov.ed.sfa.ita.persistence 1,000 SFAQueryParser.java 

SFAQueryParser.setParams(Vector) gov.ed.sfa.ita.persistence 1,000 SFAQueryParser.java 

SFAResultSet.<init>(ResultSet, Statement) gov.ed.sfa.ita.persistence 1,000 SFAResultSet.java 

SFAResultSet.close() gov.ed.sfa.ita.persistence 1,000 SFAResultSet.java 

SFAResultSet.next() gov.ed.sfa.ita.persistence 1,000 SFAResultSet.java 

SFAUnitOfWork.executeQuery(String) gov.ed.sfa.ita.persistence 1,000 SFAUnitOfWork.java 

SFADomain.<init>(String, String, String) gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFADomain.getDataSourceName() gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFADomain.getPassword() gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFADomain.getUserName() gov.ed.sfa.ita.persistence 1 SFADomain.java 

SFAPersistableObjectManager.<init>(SFADoma
in) 

gov.ed.sfa.ita.persistence 1 SFAPersistableObjectManager.java 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 125

Name Package Calls Source 

SFAUnitOfWork.<init>(String, String, String) gov.ed.sfa.ita.persistence 1 SFAUnitOfWork.java 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 126

6.2.7 General Performance Metrics 
The ITA Persistence framework was run through a performance testing harness to determine system-level 
performance metrics for the framework components. The harness tested the system as a whole, for object 
updates and object retrievals, in the WebSphere application server environment.  Running the tests on a 
Compaq Deskpro with an Intel 600 MHz Pentium III processor, running WindowsNT 4.0 and using 
WebSphere 3.5.3 and Oracle 8.0.6.0.0 yields the following performance numbers: 

ITA Persistence performance statistics from Intel desktop test machine 

Operation Iterations Total Time Average Time Calls Per Second 

Object Update 1000 5,900 ms 5.9 ms 169.5 

Object Retrieval 1000 4,116 ms 4.1 ms 243.9 

 

As the chart above indicates, the ITA Persistence framework has strong performance characteristics and is 
capable of performing 100-200 persistence operations a second on the test machine.  It should be noted 
that these servers, were not tuned for performance in any way.  In particular, the full version of Oracle 
running on the desktop test machine probably most affected the performance.  On production level 
machines, with tuned servers, these numbers would increase significantly, and it should meet the needs 
of most applications.  It incurs minimal processing over what would be required for a normal JDBC 
implementation and provides a solid, stable framework on which to conduct database transactions.  

6.3 User Guide 

6.3.1 Introduction 
6.3.1.1 Purpose 

This section provides a high-level summary and usage scenarios for the Integrated Technical Architecture 
(ITA) standard Persistence Framework.  The Persistence framework is part of a suite of frameworks called 
Reusable Common Services (RCS), which are provided to SFA applications by the ITA initiative.  The goal 
of the ITA initiative is to promote code reuse, standardization, and application of best practices across all 
SFA system development projects. 

6.3.1.2 Intended audience 

This section is intended for ITA and SFA application programmers who need to understand the 
Persistence framework in order to use this framework in their applications.   

Primarily, one senior developer on a team will need to know the Persistence framework in detail in order 
to create mappers and business objects, while the other application programmers will only need to know 
how to use the mappers and business objects in their application code.  More detail on user 
responsibilities will be presented in the usage scenarios. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 127

6.3.2 Background 
The goal of the development of this ITA Persistence framework was to provide a simple yet robust toolset 
that could easily be utilized by any SFA development team building applications in Java, or more 
specifically on the WebSphere Application Server.  It should be noted, however, that while the design of 
the persistence framework does incorporate the best practices as recommended in WebSphere 
documentation, there is nothing in this package that ties it to WebSphere.   

Database access, an important part of any project, is one of the most time-consuming coding tasks and 
one of the most resource intensive components of a deployed application.  Correct database access coding 
is critical to the performance and maintainability of an application.  However, without a framework in 
place, each developer on a project will code database access as he or she sees fit (and best knows how), 
often leading to a haphazard implementation and duplication of effort.  Some planning and forethought 
up front can save an application development team countless hours of tracing and debugging incorrect or 
inefficient database access. 

6.3.2.1 Scope 

This section covers only installation, features, and usage scenarios of the ITA Persistence framework.  The 
Persistence framework is tied to the ITA Exception Handling framework, and typically used with the ITA 
Logging framework – however, the Exception Handling and Logging frameworks are not covered in this 
section.  Consult the ITA Exception Handling and ITA Logging user guides for more information on these 
frameworks. 

6.3.2.2 Assumptions 

The Persistence framework has been designed and tested in a J2EE application server environment.  
Specifically, it was developed in the current production environment for SFA:  IBM WebSphere 3.5, 
running on its required IBM JDK version 1.2.2.  It uses Java Database Connectivity (JDBC) 2.0, with the 
database pooling implementation of the server.  It should also work with the current JavaServer Pages 
(1.1), Java Servlet (2.2), and Java Messaging Service (1.0.1) specifications for this server.  It was built and 
tested on Sun Solaris 2.6 operating system. 

6.3.3 Description 
6.3.3.1 Overview 

The ITA persistence framework provides a transparent and flexible mapping of the business objects to 
relational database tables.  It is transparent in that once the business objects and their mappings are 
defined; application developers do not need to have any knowledge of the underlying relational database 
tables.  It is flexible in that if the underlying relational database model changes, the business object model 
does not have to change with it – a change in the mapping layer is all that should be required.  The 
framework is made up of several components working together: 

• Domain Component 

• Unit of Work Component 

• Persistable Object Manager Component 

• Result Set Component 

• Business Mapper Component 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 128

• Business Object Component 

 

A diagram of the components working together (retrieving a Customer Object from the database) is 
presented below: 

Explanation of Steps: 

1. Create Mapper and Business Object, populate values to update 

2. Create Domain with connection information 

3. Create Persistable Object Manager passing the domain 

4. Request object from the POM passing the Mapper information 

5. POM executes the query, maps the data to the object, closes the unit of work, and returns the object 

 

Runtime Environment 

4. 

  3. 

Persistence Framework 

Domain 

Persistent 
Object 

Manager 

Mapper 

Unit of Work 

Result Set 

Customer 
Object 

JDBC 
Connection 

JDBC 
Recordset 1. 

Database 

Table 
Customer 

2. 

Large 
Grained 
Business 
Component 5. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 129

6.3.3.2 Features 

The ITA persistence feature set is designed to hide database access complexities from application 
developers.  By abstracting the business object representation of data from its physical database storage 
characteristics, this framework provides features such as: 

• Eliminating the need for application developers to be knowledgeable about the system database 
design 

• Eliminating the need for application developers to be proficient in SQL 
• Consolidating all SQL calls in one place to maximize performance and ease maintenance 
• Eliminating the need for application developers to be proficient with the JDBC library 
• Consolidating data validation rules in the business object layer to ensure data integrity is consistently 

maintained 
 

In addition, the framework was designed to meet SFA application development requirements, and to 
work optimally in the SFA technical environment.  Specifically, the framework has been designed to: 

• Support applications running on the IBM WebSphere Application Server (WAS) 
• Implement IBM WAS best practices for database access 
• Implement IBM WAS best practices for object management 
• Integrate the ITA exception handling framework 
• Support ad-hoc database interaction 
 
6.3.3.3 Main Concepts 

The ITA Persistence framework consists of the following main classes: 

Domain 

The Domain is an object store that holds a database URL, a username, and a password.  It represents the 
domain that the data resides in for the application.  Storing database connection information in this 
manner supports ease of application configuration updates. 

Unit of Work  

The UnitOfWork models a persistence unit of work. A UnitOfWork has a Connection that represents the 
actual physical connection to the database. It allows a series of related actions to be logically grouped 
together that can be either committed or rolled back against a database connection. 

Persistable Object Manager 

The Persistable Object Manager is used to create, read, update, and delete information from the data 
store. It holds (or creates and holds) a single Unit of Work that can be used throughout a Business 
Component method that accesses the data store.  

Methods from the BusinessComponent class and the Business class that call methods within this class 
should create a single PersistableObjectManager object and directly call the methods here for persistent 
data access and storage. The PersistableObjectManager class also acts as a wrapper for the data access 
layer (JDBC).  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 130

Result Set 

The Result Set is a wrapper around the JDBC ResultSet to provide transparent access to data stored in the 
result set. It allows the architecture to access the result set in an object-oriented manner. For example, 
sending next() to the result set will return the next business object instance in the result set. Executing 
database operations such as select and detect on the Extent will return a Result Set of business object 
instances retrieved from the data store.  

Business Mapper 

The Business Mapper needs to provide the Business Object – specific mapping information to the rest of 
the framework.  The ISFAPersistableMapper interface defines what methods will be required for a 
functional persistable business object mapper to implement.  Implementing the interface for a particular 
business object will lead to a Mapper class, where all database specific code (select, insert, update, delete 
statements, etc.) will be contained.  The framework then uses this code to map the business object to the 
database. 

Business Object 

The Business Object is a basic data structure with very little code overhead other than private data 
members and public set() and get() methods to access them.  In this way the data that is retrieved from 
the database is completely decoupled from its Java representation.  As a result once data is retrieved it 
can be manipulated with very little overhead (i.e. database access or connections) until it needs to be 
persisted back to the data store. 

6.3.4 Installation  
6.3.4.1 Software requirements 

The ITA Persistence framework was designed and tested in SFA’s production server environment, IBM 
WebSphere 3.5.3 and on IBM’s JDK 1.2.2.  It can only run in the WebSphere environment as it utilizes 
WebSphere Data Sources for its database connectivity.  The Persistence framework requires a database; a 
standard relational database, such as Oracle, SQL Server, or DB2, must be accessible from the WebSphere 
server.  An appropriate JDBC driver for the system database will have to be installed on the WebSphere 
server and set in the classpath. 

The ITA Persistence framework also makes use of the ITA Exception Handling framework v1.5.  Please 
see the user guide for the Exception Handling framework for instructions on its installation and 
configuration.  If applications intend to log error messages using the ITA Logging framework, then the 
user guide for that framework should be consulted for the appropriate configuration and supporting 
libraries. 

6.3.4.2 Installation procedures 

The Persistence framework uses one jar file, rcs_persistence_v1.5.jar, for operation.  This jar file contains 
all necessary core classes for proper execution of the Persistence framework.  The classpath of the server 
should be updated to refer to this file.  As the Persistence framework makes use of the ITA Exception 
Handling framework, that jar file, rcs_exception_v1.5.jar, should also be installed (copied to the same 
directory as the persistence jar file) and the classpath should also be updated to refer to that file. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 131

As noted above, several classes will have to be developed on a custom basis for each application, these 
being the Business Objects and Mappers.  See the usage scenario steps for a detailed explanation on how 
to create these classes.  These will also need to be deployed on the WebSphere server.   

Finally, a Data Source will have to be created in the WebSphere Administrator’s Console and pointed to 
the database to be used with the framework.  The Data Source will require an appropriate JDBC driver for 
the database that will be used with the framework.  The jar file for this driver must be on the WebSphere 
server, and its classpath should refer to it.  The name of the Data Source will be set in the Domain object 
when the framework is initialized. 

6.3.5 Configuration 
A JDBC 2.0 Data Source must be configured on the WebSphere server in order to access the database that 
the framework will work with.  Note that the Data Source will require an appropriate JDBC driver for the 
database that will be used with the framework.  The jar file for this driver must be on the WebSphere 
server, and its classpath should refer to it.  The following screenshots illustrate how to accomplish this 
from the WebSphere Administrator’s console.  

6.3.5.1 Start the Create Data Source Wizard 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 132

 

6.3.5.2 Identify the JDBC driver for this Data Source 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 133

 

6.3.5.3 Set the properties for the JDBC driver 

 

 

6.3.5.4 Set the properties for the Data Source 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 134

6.3.6 Usage Scenarios and Sample Code 
The usage scenarios described in this section describe the steps necessary to completely build and use a 
sample persistable component.  The scenarios encompass all steps in the process, from designing the 
database tables to retrieving and saving persistable objects in application code.  As this sample describes a 
particular usage in detail, it should also serve to show the power and flexibility of the framework, and 
how it can be extended to support virtually all interactions with the database during application 
execution. 

6.3.6.1 Design the Database Tables 

The tables can be designed using standard database modeling practices – there is nothing about the 
persistence framework that constrains the database design with which it would work.  It should be 
considered, however, how a business object would map to the table or set of tables in the database.  A 
business object can span multiple tables – for example, a primary table and associated lookup tables for 
codes, etc.  The mapping class will just have to account for the database relationships in its SQL 
Statements for selects, updates, and so forth.   

Below is an example of DDL (simplified, without storage clauses, etc.) for the table used in our sample: 

CREATE TABLE "SCOTT".T_ORDERREQUEST  
(PROPERTYID VARCHAR2(50) NOT NULL,  
REQUESTDATE VARCHAR2(50) NULL,  
REQUESTACTION VARCHAR2(50) NULL,  
EFFECTIVEDATE VARCHAR2(50) NULL,   



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 135

CHECK (PROPERTYID IS NOT NULL),   
UNIQUE  (PROPERTYID),   
PRIMARY KEY (PROPERTYID))   
PCTFREE 5 PCTUSED 60 INITRANS 2 MAXTRANS 255  
STORAGE ( INITIAL 22K NEXT 2K MINEXTENTS 1 MAXEXTENTS 121 
PCTINCREASE 0); 

 

6.3.6.2 Design and Code the Business Objects 

The business objects are the classes that actually hold the data in its programmatic representation.  It is 
what the application developers use to set and retrieve values; when the database is queried or updated, 
it is these objects that are retrieved or persisted, respectively.  They should essentially be implemented as 
simple beans: private data members for each database field, with public get() and set() methods for each.   

The beans can be made more complex with field validation.  This is a design decision – the validation can 
save trips to the database if done properly, but it can also lead to hard-to-maintain code with scattered 
business rules.  However, a well-defined and well-documented set of rules in the business objects will 
allow for better validation and better performance of the persistence layer without causing debugging 
and maintainability issues.   

Below is a business object that implements a programmatic representation of the database table described 
above: 

/** 
 * Class Name:    OrderRequestBO 
 * Date:            03/05/2001 15:00:33 
 * Description:     Persistable Order Request Business Component 
 */ 
     
public class OrderRequestBO 
{ 
 private String m_propertyid; //The property id associated with 
order request 
 private String m_requestdate; //The date the request was submitted 
 private String m_effectivedate; //The date the request is 
effective 
 private String m_requestaction; //The action to be performed by 
request 
 
 // Constructor 
 public OrderRequestBO() {} 
  
 //**************   public getters   *********************/ 
 /** 

* Get the propertyid attribute 
* @return propertyid 
*/  
public String getPropertyid()  
{ return this.m_propertyid; } 

 
/** 
* Get the requestdate attribute 
* @return requestdate 
*/  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 136

public String getRequestdate()  
{ return this.m_requestdate; } 

 
/** 
* Get the effectivedate attribute 
* @return effectivedate 
*/  
public String getEffectivedate()  
{ return this.m_effectivedate; } 

 
/** 
* Get the requestaction attribute 
* @return requestaction 
*/  
public String getRequestaction()  
{ return this.m_requestaction; } 

 
 
 //**************   public setters   *********************/ 
 /** 

* set the propertyid attribute 
* @param String newPropertyid 
*/  
public void setPropertyid(String newPropertyid )  
{ this.m_propertyid = newPropertyid; } 

 
/** 
* set the requestdate attribute 
* @param String newRequestdate 
*/  
public void setRequestdate(String newRequestdate )  
{ this.m_requestdate = newRequestdate; } 

 
/** 
* set the effectivedate attribute 
* @param String newEffectivedate 
*/  
public void setEffectivedate(String newEffectivedate )  
{ this.m_effectivedate = newEffectivedate; } 

 
/** 
* set the requestaction attribute 
* @param String newRequestaction 
*/  
public void setRequestaction(String newRequestaction )  
{ this.m_requestaction = newRequestaction; } 

} 

 
6.3.6.3 Design and Code the mappings between Tables and Objects 

The business object mapper is the most critical piece of a persistence framework implementation.  It is 
where the database design meets the Java object design.  Therefore, it encapsulates both Java OO concepts 
and relational database concepts.  The example below can appear like a complex component, but it 
mainly consists of two main functions: 1) parameter retrieval and 2) statement retrieval.  It does this for 
each of the main database interactions: selects, updates, and deletes.  Support for these functions is 
enforced through the ISFAPersistableMapper interface; all mappers much implement it.   



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 137

The parameter retrieval functions perform the basic task of putting the business object fields into a vector 
of SFAParameters, with key/value pairs.  The key is usually the database field name, and the value is the 
business object data member that maps to that database field.  The parameter also contains the datatype 
(in the database) for that parameter.  The getXXXParameters function simply builds this vector and 
returns it. 

The statement retrieval function returns the properly formatted SQL statement that performs the required 
operation.  The statement has embedded in it placeholders for the parameterized values that the business 
object hold (and pass to the parameter retrieval function).  The placeholders are in the form of 
?parameter_name? where parameter_name is the name given for that field in the parameter retrieval function 
(again, usually the name of the field in the database works well). 

Lastly, the populateAttributeValues() and populateKeyAttributeValues() functions basically tell the 
mapper which business object to work with – something to consider is that many business objects may be 
instantiated in code at one point in time (for example, when processing multiple business orders), so these 
functions serve the purpose of determining the current business object the framework is working with.   

Below is an example below shows how these functions are all implemented for the order business object 
and the table above. 

/** 
 * Class Name:    OrderRequestMapper 
 * Date:            03/05/2001 15:00:33 
 * Description:     Persistable Order Request Mapping Component 
 */ 
 
import java.util.Vector; 
import gov.ed.sfa.ita.persistence.ISFAPersistableMapper; 
import gov.ed.sfa.ita.persistence.SFAResultSet; 
import gov.ed.sfa.ita.persistence.SFAParameter; 
import gov.ed.sfa.ita.exception.*; 
 
public class OrderRequestMapper implements ISFAPersistableMapper 
{ 
 public OrderRequestBO persistableObject; 
 public String m_tableName = "T_ORDERREQUEST"; 
 
 public OrderRequestMapper() { 
  System.out.println("OrderRequestMapper Instantiated"); 
 } 
 
 public Vector getDeleteParameters() throws SFAException { 
  Vector parameters = new Vector(); 
  parameters.addElement(new SFAParameter("propertyid", 
persistableObject.getPropertyid(),SFAParameter.PT_STRING)); 
  return parameters; 
 } 
 
 public String getDeleteQuery() { 
  return "Delete " + " FROM "  +  this.m_tableName + " Where 
propertyid = ?propertyid?"; 
 } 
 
 public Vector getInsertParameters() throws SFAException { 
  Vector parameters = new Vector(); 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 138

  parameters.addElement(new SFAParameter("propertyid", 
persistableObject.getPropertyid(),SFAParameter.PT_STRING)); 
  parameters.addElement(new 
SFAParameter("requestdate",persistableObject.getRequestdate(),SFAParam
eter.PT_STRING)); 
  parameters.addElement(new 
SFAParameter("effectivedate",persistableObject.getEffectivedate(),SFAP
arameter.PT_STRING)); 
  parameters.addElement(new SFAParameter("requestaction", 
persistableObject.getRequestaction(),SFAParameter.PT_STRING)); 
  return parameters; 
 } 
 
 public String getInsertQuery() { 
  return " INSERT INTO " + this.m_tableName + " ( 
PROPERTYID, REQUESTDATE, EFFECTIVEDATE, REQUESTACTION)" + " VALUES ( 
?propertyid? , ?requestdate? , ?effectivedate? , ?requestaction? )" ; 
 } 
 
 public Vector getKeySelectParameters() throws SFAException { 
  Vector parameters = new Vector(); 
  parameters.addElement(new SFAParameter("propertyid", 
persistableObject.getPropertyid(),SFAParameter.PT_STRING)); 
  return parameters; 
 } 
 
 public String getKeySelectQuery()  { 
  return "SELECT propertyid, requestdate, effectivedate, 
requestaction" + " FROM "  +  this.m_tableName + " Where propertyid = 
?propertyid?" ; 
 } 
 
 public String getSelectQuery( String selectCondition) { 
  return " SELECT propertyid, requestdate, effectivedate, 
requestaction" + " FROM "  +  this.m_tableName + " Where " + 
selectCondition ; 
 } 
 
 public Vector getUpdateParameters() throws SFAException { 
  Vector parameters = new Vector(); 
  parameters.addElement(new SFAParameter("propertyid", 
persistableObject.getPropertyid(),SFAParameter.PT_STRING)); 
  parameters.addElement(new 
SFAParameter("requestdate",persistableObject.getRequestdate(),SFAParam
eter.PT_STRING)); 
  parameters.addElement(new 
SFAParameter("effectivedate",persistableObject.getEffectivedate(),SFAP
arameter.PT_STRING)); 
  parameters.addElement(new SFAParameter("requestaction", 
persistableObject.getRequestaction(),SFAParameter.PT_STRING)); 
  return parameters; 
 } 
 
 public String getUpdateQuery() { 
  return " Update " + this.m_tableName + " SET REQUESTDATE = 
?requestdate? , EFFECTIVEDATE = ?effectivedate? , REQUESTACTION = 
?requestaction?" + " Where PROPERTYID = ?propertyid?" ; 
 } 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 139

 
 public Object newFrom(SFAResultSet resultSet) throws 
SFAException { 
 try { 
  OrderRequestBO object = new OrderRequestBO(); 
  object.setPropertyid((String) 
resultSet.getString("propertyid")); 
  object.setRequestdate( 
resultSet.getString("requestdate")); 
  object.setEffectivedate( 
resultSet.getString("effectivedate")); 
  object.setRequestaction((String) 
resultSet.getString("requestaction")); 
  return object; 
 } 
 catch (Exception e) { 
  // throw a standard SFAException   
  SFAExceptionFactory fac =  
SFAExceptionFactory.getInstance();  
  SFAException ex = new SFAException(); 
  Object[] argus = new String[2]; 
   argus[0] = ""; 
   argus[1] = ""; 
  Exception prevEx = null; 
  ex = fac.createException(SFAException.class, 5, argus, 
prevEx, "OrderRequestMapper", "newFrom", ""); 
 
  throw ex; 
 } 

} 
 

 public void populateAttributeValues(Object obj)  { 
  this.persistableObject = (OrderRequestBO) obj; 
 } 
 
 public void populateKeyAttributeValues(Object obj)  { 
  this.persistableObject = (OrderRequestBO) obj; 
 } 
 
 public void setTableName(String tableName) { 

this.m_tableName = tableName; 
 } 
} 

 

6.3.6.4 Set up the database connection 

Setting the database connection consists of creating a domain object with a username, password, and 
DataSource name, and then creating a persistable object manager with that domain. 

try { 
  // Setup and populate connection values 
  String dsn = "jdbc/MyDataSource"; 
  String uid = "scott"; 
  String pwd = "tiger"; 
  int inPropertyId = 1234567; 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 140

 
  SFADomain domain = new SFADomain(dsn, uid, pwd); 
  SFAPersistableObjectManager pom = new 
SFAPersistableObjectManager(domain); 
 } 
 catch (SFAException ex) { 
  ex.printStackTrace(); 
  out.println("error " + ex.getOrigException().getMessage()); 
 } 

 

 

6.3.6.5 Use the Framework to retrieve Business Objects 

Retrieving a business object from the persistence framework involves creation of an empty business object 
of that type, setting its key values so the framework knows which object to retrieve, and requesting the 
object via the getObject() method of the persistable object manger. 

try { 
  // Setup and populate connection values 
  String dsn = "jdbc/MyDataSource"; 
  String uid = "scott"; 
  String pwd = "tiger"; 
  int inPropertyId = 1234567; 
 
  SFADomain domain = new SFADomain(dsn, uid, pwd); 
  SFAPersistableObjectManager pom = new 
SFAPersistableObjectManager(domain); 
      OrderRequestMapper mapper =  new OrderRequestMapper(); 
 
  OrderRequestBO object = new OrderRequestBO(); 
  object.setPropertyid(String.valueOf(inPropertyId)); 
  mapper.populateAttributeValues(object); 
 

object = (OrderRequestBO) pom.getObject(mapper, 
mapper.getKeySelectQuery(), mapper.getKeySelectParameters()); 

  out.println("Retrieved fields for this object: <br>"); 
  out.println(object2.getPropertyid() + "<br>"); 
  out.println(object2.getEffectivedate() + "<br>"); 
  out.println(object2.getRequestdate() + "<br>"); 
 
 
 } 
 catch (SFAException ex) { 
  ex.printStackTrace(); 
  out.println("error " + 
ex.getOrigException().getMessage()); 
 } 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 141

6.3.6.6 Update properties of Business Objects 

Updating the database with a persistable business object through the persistence framework first requires 
the creation of a business object of that type.  This object could have been created using the new Java 
keyword, or retrieved from the persistent store using the getObject method of the persistable object 
manager (see previous section).  Once created, the object’s properties are updated using the standard set() 
methods. 

try { 
  // Setup and populate connection values 
  String dsn = "jdbc/MyDataSource"; 
  String uid = "scott"; 
  String pwd = "tiger"; 
  int inPropertyId = 1234567; 
 
  SFADomain domain = new SFADomain(dsn, uid, pwd); 
  SFAPersistableObjectManager pom = new 
SFAPersistableObjectManager(domain); 
      OrderRequestMapper mapper =  new OrderRequestMapper(); 
 
  OrderRequestBO object = new OrderRequestBO(); 
  object.setPropertyid(String.valueOf(inPropertyId)); 
  mapper.populateAttributeValues(object); 
 

object = (OrderRequestBO) pom.getObject(mapper, 
mapper.getKeySelectQuery(), mapper.getKeySelectParameters()); 

  out.println("Retrieved fields for this object: <br>"); 
  out.println(object2.getPropertyid() + "<br>"); 
  out.println(object2.getEffectivedate() + "<br>"); 
  out.println(object2.getRequestdate() + "<br>"); 
 
  /* Set the new values for the fields for this object */ 
 
  String inDateRequested = "01/01/01"; 
  String inDateEffective = "01/01/01"; 
  String inActionRequested = "Place Order"; 
 
  object.setEffectivedate(inDateEffective); 
  object.setRequestaction(inActionRequested); 
  object.setRequestdate(inDateRequested); 
 
 
 } 
 catch (SFAException ex) { 
  ex.printStackTrace(); 
  out.println("error " + 
ex.getOrigException().getMessage()); 

               } 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 142

6.3.6.7 Use the Framework to persist Business Objects to the database 

With the key values set (so the framework knows which object to update) along with any additional data 
members that need to be updated (see previous section), the object can be persisted via the updateObject() 
method of the persistable object manger. 

 try { 
  // Setup and populate connection values 
  String dsn = "jdbc/MyDataSource"; 
  String uid = "scott"; 
  String pwd = "tiger"; 
  int inPropertyId = 1234567; 
 
  SFADomain domain = new SFADomain(dsn, uid, pwd); 
  SFAPersistableObjectManager pom = new 
SFAPersistableObjectManager(domain); 
      OrderRequestMapper mapper =  new OrderRequestMapper(); 
 
  OrderRequestBO object = new OrderRequestBO(); 
  object.setPropertyid(String.valueOf(inPropertyId)); 
  mapper.populateAttributeValues(object); 
 

object = (OrderRequestBO) pom.getObject(mapper, 
mapper.getKeySelectQuery(), mapper.getKeySelectParameters()); 

  out.println("Retrieved fields for this object: <br>"); 
  out.println(object2.getPropertyid() + "<br>"); 
  out.println(object2.getEffectivedate() + "<br>"); 
  out.println(object2.getRequestdate() + "<br>"); 
 
  /* Set the new values for the fields for this object */ 
 
  String inDateRequested = "01/01/01"; 
  String inDateEffective = "01/01/01"; 
  String inActionRequested = "Place Order"; 
 
  object.setEffectivedate(inDateEffective); 
  object.setRequestaction(inActionRequested); 
  object.setRequestdate(inDateRequested); 
 
  /* Persist the object out to the database */ 
  mapper.populateAttributeValues(object); 
 
 pom.addObject(mapper.getInsertQuery(),mapper.getInsertParameters());
    
  pom.commitTransaction(); 
 
 } 
 catch (SFAException ex) { 
  ex.printStackTrace(); 
  out.println("error " + ex.getOrigException().getMessage()); 
 } 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 143

6.3.6.8 Obtain a pooled database connection from the Framework for ad-hoc JDBC queries 

The persistable object manager also contains a method that allows an application programmer to directly 
use the JDBC connection that the framework is using.  This may prove useful if the application 
development decides that it needs to perform some database access outside of the persistence framework.  
A developer would have to be knowledgeable in databases, SQL, and the JDBC API in order to make use 
of the connection.  Use of the connection is only advised if a database access issue cannot fit within the 
design of the framework, which shouldn’t be often, but if it occurs, then the framework will provide the 
pooled connection, created using the best practices for access specified for IBM WebSphere. 

try { 
 Connection connection = pom.getConnection(); 
  
 Statement stmt = connection.createStatement(); 
 ResultSet rs = stmt.executeQuery("SELECT * FROM EMP"); 
 
 out.println("<table border=1>"); 
 int i = 0; 
 while (rs.next()) { 
  out.println("<tr><td>" + rs.getString("EMPNO") + "</td><td>"  
+ rs.getString("ENAME") + "</td><td>"  + rs.getString("JOB") +  
"</td></tr>"); 
  i++; 
 } 
 out.println("</table>"); 
 rs.close(); 
 stmt.close(); 
 connection.close(); 
 } 
 catch (SFAException ex) { 
  ex.printStackTrace(); 
  out.println("error " + ex.getOrigException().getMessage()); 
 } 

 

 

6.3.7 Resources 
JavaDoc on JDBC - http://www.javasoft.com/products/jdk/1.2/docs/api/index.html 

JDBC Tutorial - http://www.javasoft.com/docs/books/tutorial/jdbc/index.html 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 144

 

7 RCS  – Search Framework 
The search framework simplifies, standardizes, and improves the use of the Autonomy search engine.  
The Autonomy Search Engine server provides a variety of methods to utilize its search capabilities 
including a C API, HTTP API, and configurable CGI program.  Of the three ITA R1.0 applications that 
used Autonomy, IFAP and Intranet 2.0 used the C API to write a custom CGI program and Schools Portal 
used the configurable CGI program.  Neither of these applications followed the J2EE standards of the ITA 
environment nor did the applications utilize all of the features provided by the Autonomy Search Engine 
Server. 

The framework consists of classes that provide a common way to access the Autonomy HTTP API and 
utilize the following Autonomy features: 

• Query search engine (including querying a custom field) 
• Natural Language or "Fuzzy" query search engine (including querying a custom field) 
• Display search results (including sorting by a custom field) 
• Suggest additional search results 
 

7.1 Testing Conditions & Results 

7.1.1 Automated Testing 
Cycle 1 – Autonomy statement 

# Detailed 
Condition 

Test Class 
Name 

Test Class 
Method 

Class 
Name Method Name Results Data File Name 

1 customQuery
Stmt is null 

TestAutonom
yStatement 

testAddCus
tomQuerySt

mtErr 

Autonomy
Statement 

addCustomQuerySt
mt 

Custom Query is 
not executed and 
an SFAException 
is thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

2 
customQuery
Stmt is not 
null 

TestAutonom
yStatement 

testAddCus
tomQuerySt

mt 

Autonomy
Statement 

addCustomQuerySt
mt 

String is added to 
end of query 

autonomy.properties, rcs.xml,    
errormessages.properties 

3 

The max 
number of 
results for the 
fuzzy query is 
not set 

TestAutonom
yStatement 

testExecute
FuzzyQuery

Err1 

Autonomy
Statement executeFuzzyQuery 

The fuzzy query is 
not executed and 
an SFAException 
is thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

4 

The query text 
or custom 
query text is 
not set 

TestAutonom
yStatement 

testExecute
FuzzyQuery

Err2 

Autonomy
Statement executeFuzzyQuery 

The fuzzy query is 
not executed and 
an SFAException 
is thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

5 The search 
criteria is met 

TestAutonom
yStatement 

testExecute
FuzzyQuery 

Autonomy
Statement executeFuzzyQuery The fuzzy query is 

executed 
autonomy.properties, rcs.xml,    

errormessages.properties 

6 

The max 
number of 
results for the 
query is not 
set 

TestAutonom
yStatement 

testExecute
QueryErr1 

Autonomy
Statement executeQuery 

The query is not 
executed and an 
SFAException is 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 145

# Detailed 
Condition 

Test Class 
Name 

Test Class 
Method 

Class 
Name Method Name Results Data File Name 

7 

The query text 
or custom 
query text is 
not set 

TestAutonom
yStatement 

testExecute
QueryErr2 

Autonomy
Statement executeQuery 

The query is not 
executed and an 
SFAException is 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

8 
The criteria for 
the query is 
met 

TestAutonom
yStatement 

testExecute
Query 

Autonomy
Statement executeQuery The query is 

executed  
autonomy.properties, rcs.xml,    

errormessages.properties 

9 The docid is 
invalid 

TestAutonom
yStatement 

testExecute
SuggestErr

1 

Autonomy
Statement executeSuggest 

The Suggest 
query is not 
executed, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

10 

The max 
number of 
results for the 
Suggest is 0 

TestAutonom
yStatement 

testExecute
SuggestErr

2 

Autonomy
Statement executeSuggest 

The Suggest 
query is not 
executed, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

11 

All the 
Suggest query 
criteria are 
met 

TestAutonom
yStatement 

testExecute
Suggest 

Autonomy
Statement executeSuggest The Suggest 

query is executed 
autonomy.properties, rcs.xml,    

errormessages.properties 

12 
The query or 
search starts 
over 

TestAutonom
yStatement testReset Autonomy

Statement reset 
The query terms 
are all reset to 
their initial values 

autonomy.properties, rcs.xml,   
errormessages.properties 

13 

The inputted 
database 
name is not 
valid 

TestAutonom
yStatement 

testSetData
baseNames

Err 

Autonomy
Statement setDatabaseNames 

Database name 
not set, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

14 
The inputted 
database 
name is valid 

TestAutonom
yStatement 

testSetData
baseNames 

Autonomy
Statement setDatabaseNames 

The inputted 
database name is 
concatenated to 
the database 
name string 

autonomy.properties, rcs.xml,    
errormessages.properties 

15 

The inputted 
database 
number is not 
valid 

TestAutonom
yStatement 

testSetData
baseNums

Err 

Autonomy
Statement setDatabaseNums 

The database 
number is not set, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

16 

The inputted 
database 
number is 
valid 

TestAutonom
yStatement 

testSetData
baseNums 

Autonomy
Statement setDatabaseNums 

The inputted 
database number 
is set 

autonomy.properties, rcs.xml,    
errormessages.properties 

17 The docID is 
not null 

TestAutonom
yStatement testSetID Autonomy

Statement setID 
The document ID 
is set for the 
Suggestion query 

autonomy.properties, rcs.xml,    
errormessages.properties 

18 The docID is  
null 

TestAutonom
yStatement 

testSetIDEr
r 

Autonomy
Statement setID 

The ID is not set, 
SFAException 
throw 

autonomy.properties, rcs.xml,    
errormessages.properties 

19 

A valid 
number of 
max results is 
inputted 

TestAutonom
yStatement 

testSetMax
NumResult

s 

Autonomy
Statement setMaxNumResults 

The 
MaxNumResults 
is set 

autonomy.properties, rcs.xml,    
errormessages.properties 

20 
Max number 
of results set 
to < 0 

TestAutonom
yStatement 

testSetMax
NumResult

sErr 

Autonomy
Statement setMaxNumResults 

MaxNumResults 
not set, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

21 

A zero or 
positive 
number is 
inputted for 
threshold 

TestAutonom
yStatement 

testSetMinT
hreshold 

Autonomy
Statement setMinThreshold The threshold is 

set 
autonomy.properties, rcs.xml,    

errormessages.properties 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 146

# Detailed 
Condition 

Test Class 
Name 

Test Class 
Method 

Class 
Name Method Name Results Data File Name 

22 

A negative 
number is 
inputted for 
the threshold 

TestAutonom
yStatement 

testSetMinT
hresholdErr 

Autonomy
Statement setMinThreshold 

Threshold is not 
set, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

23 
boolean AND 
search is 
selected 

TestAutonom
yStatement 

testSetQuer
yAllWords 

Autonomy
Statement setQueryAllWords 

The search is set 
to find all of the 
words 

autonomy.properties, rcs.xml,    
errormessages.properties 

24 
boolean OR 
search is 
selected 

TestAutonom
yStatement 

testSetQuer
yAnyWords 

Autonomy
Statement setQueryAnyWords 

The search is set 
to find any of the 
words 

autonomy.properties, rcs.xml,    
errormessages.properties 

25 

The length of 
the query 
string is at 
least one 
character 

TestAutonom
yStatement 

testSetQuer
yText 

Autonomy
Statement setQueryTest The query text is 

set 
autonomy.properties, rcs.xml,    

errormessages.properties 

26 The query text 
is null 

TestAutonom
yStatement 

testSetQuer
yTextErr 

Autonomy
Statement setQueryTest 

Query text is not 
set, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

27 
Field name 
and query text 
are valid 

TestAutonom
yStatement 

testSetQuer
yTextCusto

mField 

Autonomy
Statement 

setQueryTextCusto
mField 

Custom query text 
is set 

autonomy.properties, rcs.xml,    
errormessages.properties 

28 
Field name is 
null for custom 
field query 

TestAutonom
yStatement 

testSetQuer
yTextCusto
mFieldErr1 

Autonomy
Statement 

setQueryTextCusto
mField 

Custom query text 
is not set, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

29 

Custom field 
is null for 
custom field 
query 

TestAutonom
yStatement 

testSetQuer
yTextCusto
mFieldErr2 

Autonomy
Statement 

setQueryTextCusto
mField 

Custom query text 
is not set, 
SFAException 
thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

30 
Sorting by 
date is 
requested 

TestAutonom
yStatement 

testSetSort
ByDate 

Autonomy
Statement setSortByDate 

The query to 
return results 
sorted by date 
only 

autonomy.properties, rcs.xml,    
errormessages.properties 

31 
Sorting by 
relevance is 
requested 

TestAutonom
yStatement 

testSetSort
ByRelevanc

e 

Autonomy
Statement setSortByRelevance 

The query to 
return results 
sorted by 
relevance only 

autonomy.properties, rcs.xml,    
errormessages.properties 

32 
Sorting by 
relevance date 
is requested 

TestAutonom
yStatement 

testSetSort
ByRelevanc

eDate 

Autonomy
Statement 

setSortByRelevance
Date 

The query to 
return results 
sorted by 
relevance date 
only 

autonomy.properties, rcs.xml,    
errormessages.properties 

33 

Return 
autonomy 
resultset from 
statement 

TestAutonom
yStatement testGetRS Autonomy

Statement getRS 

A reference to the 
autonomy 
resultset is 
returned 

autonomy.properties, rcs.xml,    
errormessages.properties 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 147

Cycle 2 – Autonomy result set 

# Detailed 
Condition 

Test Class 
Name Test Class Method Class Name Method 

Name Results Data File Name 

1 Valid number of 
rows are specified 

TestAutonomy
ResultSet testAbsoluteValidRows AutonomyRe

sultSet absolute Jump to 
specified row 

autonomy.properties, rcs.xml,    
errormessages.properties 

2 Invalid number of 
rows are specified 

TestAutonomy
ResultSet 

testAbsoluteInvalidRow
s 

AutonomyRe
sultSet absolute Does not jump 

to specified row 
autonomy.properties, rcs.xml,    

errormessages.properties 

3 
An invalid 
fieldname is 
passed 

TestAutonomy
ResultSet 

testGetCustomFieldInv
alid 

AutonomyRe
sultSet 

getCustom
Field 

An 
SFAException 
is thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

4 A valid fieldname is 
passed 

TestAutonomy
ResultSet testGetCustomField AutonomyRe

sultSet 
getCustom

Field 

Returns a 
parsed result 
set 

autonomy.properties, rcs.xml,    
errormessages.properties 

5 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetDatabaseNum AutonomyRe

sultSet 
getDatabas

eNum 

Returns 
Autonomy 
database 
number of 
current row 

autonomy.properties, rcs.xml,    
errormessages.properties 

6 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetID AutonomyRe

sultSet getID 
Returns 
document ID of 
current row 

autonomy.properties, rcs.xml,    
errormessages.properties 

7 A valid result set 
exists 

TestAutonomy
ResultSet testGetNumResults AutonomyRe

sultSet 
getNumRes

ults 

Returns 
number of 
results from 
result set 

autonomy.properties, rcs.xml,    
errormessages.properties 

8 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetQuickSummary AutonomyRe

sultSet 
getQuickSu

mmary 

Returns a quick 
summary of 
current row 

autonomy.properties, rcs.xml,    
errormessages.properties 

9 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetRow AutonomyRe

sultSet getRow Returns row 
number 

autonomy.properties, rcs.xml,    
errormessages.properties 

10 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetSummary AutonomyRe

sultSet 
getSummar

y 

Returns a 
summary of 
current row 

autonomy.properties, rcs.xml,    
errormessages.properties 

11 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetTitle AutonomyRe

sultSet getTitle Returns title of 
current row 

autonomy.properties, rcs.xml,    
errormessages.properties 

12 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetURL AutonomyRe

sultSet getURL Returns URL of 
current row 

autonomy.properties, rcs.xml,    
errormessages.properties 

13 
The result set 
contains a valid 
row 

TestAutonomy
ResultSet testGetWeight AutonomyRe

sultSet getWeight 

Returns 
document 
weight of 
current row 

autonomy.properties, rcs.xml,    
errormessages.properties 

14 The current row 
isn't the last row 

TestAutonomy
ResultSet testNextNotLastRow AutonomyRe

sultSet next 
The next row is 
set and true is 
returned 

autonomy.properties, rcs.xml,    
errormessages.properties 

15 The current row is 
the last row 

TestAutonomy
ResultSet testNextIsLastRow AutonomyRe

sultSet next 

The current row 
is set and 
failure is 
returned 

autonomy.properties, rcs.xml,    
errormessages.properties 

16 The current row 
isn't the first row 

TestAutonomy
ResultSet 

testPreviousIsNotFirst
Row 

AutonomyRe
sultSet previous 

The previous 
row is set and 
true is returned 

autonomy.properties, rcs.xml,    
errormessages.properties 

17 The current row is 
the first row 

TestAutonomy
ResultSet testPreviousIsFirstRow AutonomyRe

sultSet previous 
The current row 
is set and false 
is returned 

autonomy.properties, rcs.xml,    
errormessages.properties 

18 A valid result set TestAutonomy testGetNumRows AutonomyRe getNumRo Returns autonomy.properties, rcs.xml,    



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 148

# Detailed 
Condition 

Test Class 
Name Test Class Method Class Name Method 

Name Results Data File Name 

exists ResultSet sultSet ws number of ows 
in result set 

errormessages.properties 

 

Cycle 3 – Autonomy server connection up 

# Detailed Condition Test Class 
Name Test Class Method Class Name Method 

Name Results Data File Name 

1 AutonomyConnect
ion is created 

TestAutonomy
ConnectionSe

rverDown 

TestAutonomyConnecti
onConstrPass 

AutonomyCo
nnection 

AutonomyC
onnection 

AutonomyConn
ection is 
created 

autonomy.properties, rcs.xml,    
errormessages.properties 

2 
An 

AutonomyStateme
nt is created  

TestAutonomy
ConnectionSe

rverUp 

testCreateStatementPa
ss 

AutonomyCo
nnection 

createState
ment 

AutonomyState
ment is created 

autonomy.properties, rcs.xml,    
errormessages.properties 

3 
Host name is set 
to valid Autonomy 
Server host name 

TestAutonomy
ConnectionSe

rverUp 
testGetHost AutonomyCo

nnection getHost Host name 
returned 

autonomy.properties, rcs.xml,    
errormessages.properties 

4 
Index port is set to 

valid Autonomy 
Server index port 

TestAutonomy
ConnectionSe

rverUp 
testGetIndexPort AutonomyCo

nnection 
getIndexPor

t 
index port is 

returned 
autonomy.properties, rcs.xml,    

errormessages.properties 

5 
Query port is set 

to valid Autonomy 
Server query port 

TestAutonomy
ConnectionSe

rverUp 
testGetQueryPort AutonomyCo

nnection 
getQueryPo

rt 
query port is 

returned 
autonomy.properties, rcs.xml,    

errormessages.properties 

6 The server is up 
TestAutonomy
ConnectionSe

rverUp 

testIsServerStatusOkTr
ue 

AutonomyCo
nnection 

isServerSta
tusOK returns true autonomy.properties, rcs.xml,    

errormessages.properties 

 
Cycle 4 – Autonomy server connection down 

# Detailed 
Condition 

Test Class 
Name Test Class Method Class Name Method 

Name Results Data File Name 

1 
AutonomyConnec
tion not created, 
server is down 

TestAutonomy
ConnectionSe

rverDown 

TestAutonomyConnecti
onConstrFail 

AutonomyCo
nnection 

AutonomyC
onnection 

AutonomyConn
ection is not 
created, 
SFAException 
is thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

2 

An 
AutonomyStatem
ent is not made, 
server is down 

TestAutonomy
ConnectionSe

rverDown 

testCreateStatementFa
il 

AutonomyCo
nnection 

createState
ment 

AutonomyState
ment is not 
created, 
SFAException 
is thrown 

autonomy.properties, rcs.xml,    
errormessages.properties 

3 The server is 
down 

TestAutonomy
ConnectionSe

rverDown 

testIsServerStatusOkF
alse 

AutonomyCo
nnection 

isServerSta
tusOK Returns false autonomy.properties, rcs.xml,    

errormessages.properties 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 149

Cycle 5 – Autonomy connection bad prop. 

# Detailed 
Condition 

Test Class 
Name Test Class Method Class Name Method 

Name Results Data File Name 

1 Input properties 
file is not found 

TestAutonomy
ConnectionBa

dProps 

TestAutonomyConnecti
onBadPropsFile 

Autonomy 
Connection 

AutonomyC
onnection 

AutonomyConne
ction is not 
created, 
SFAException is 
thrown 

autonomy.properties, 
rcs.xml,    

errormessages.properties 

 

7.2 Performance Analysis 

7.2.1 Summary 
The ITA Search framework was run through a performance testing harness to determine its system-level 
performance metrics.  The ITA Search framework has strong performance characteristics.  Its tiered 
architecture of connections, statements and resultsets ensures that the only processing that occurs is what 
is absolutely necessary for an operation.  

The Search framework does make use of the Logging framework. Logging includes disk accesses 
(generally very time-costing operations) and thus in a production environment where logging is kept to a 
minimum, the response times should be faster.  The actual response of the Autonomy Server is very fast.  
Network latency enters into the equation somewhat, but not significant.   Nevertheless, The most 
important enhancement may be made to the parsing of results.  It has been discovered that there is an 
increase in response time when the number of results increase.  This is due to the parsing the results after 
it is retrieved from the Autonomy Server.  As indicated by the Methods with the most time spent only in that 
method chart shown below, the search framework spends the most amount of time parsing the search 
result. The upcoming release of the Search framework will include revised code to reduce the time spend 
on parsing.  

 

7.2.2 Test Environment 
The testing harness was run on a standard SFA developer workstation.  The hardware consisted of a 
Compaq Deskpro with a single 600 MHz Pentium III processor and 512 MB of RAM.  The machine ran 
Windows NT 4.0 Service Pack 6.  The Java environment was Sun’s JDK 1.3.  While tests were run, no 
other applications were loaded into memory, and the system was not interacted with.  This was done in 
order to leave all resources available to the test harness, and eliminate the possibility of unexplained 
behavior in the tables of results. 

7.2.3 Test Configuration 
The ITA Search framework was configured in a very standard manner, as it would be in actual usage.  
The configuration of the framework implements Logging and Exception frameworks. Therefore, any 
configurations these frameworks require were used. To eliminate network latency the same workstation 
was used for an Autonomy Server instead of traversing through the frame relay network. This should 
simulate the same characteristics of a production environment where the application server has a very 
fast connection to the Autonomy server. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 150

7.2.4 Test Scenarios 
This search performance test focused on one usage scenario for its analysis: Looping 25 times through a 
method invoking AutonomyConnection, AutonomyStatement, and AutonomyResultSet. ITA team chose 
to consider 25 sequential runs to reach a steady state of object use. Reaching a steady-state will show that 
memory allocations are consistent. This scenario covers all three components of the Search framework.  
The first two components were called 25 times each, while the third (resultset) component was called 250 
times (because we set a maximum of 10 results).   

Here is the testing code: 

package gov.ed.sfa.ita.samples; 
 
import gov.ed.sfa.ita.exception.*; 
import gov.ed.sfa.ita.search.*; 
import gov.ed.sfa.ita.logging.*; 
 
public class AutonomyPerform { 
 
   public AutonomyPerform() { 
      super(); 
   } 
 
   public static void main(String[] args) { 
  for (int x=0; x<25; x++) { 
   testSearchNormal(); 
  } 
   } 
 
   public static boolean testSearchNormal() { 
      try { 
         AutonomyConnection con = new AutonomyConnection(); 
         con.getHost(); 
         con.getIndexPort(); 
         con.getQueryPort(); 
 
         AutonomyStatement stmt = con.createStatement(); 
 
         stmt.setDatabaseNums("34"); 
         stmt.setMaxNumResults(10); 
         stmt.setMinThreshold(10); 
         stmt.setQueryText("SFA Publications"); 
         stmt.getQueryText(); 
 
         AutonomyResultSet aRS = stmt.executeQuery(); 
 
         aRS.getNumResults(); 
         do { 
            aRS.getRow(); 
            aRS.getNumResults(); 
            aRS.getTitle(); 
            aRS.getSummary(); 
            aRS.getQuickSummary(); 
            aRS.getURL(); 
            aRS.getWeight(); 
            aRS.getID(); 
            aRS.getDatabaseNum(); 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 151

            aRS.getCustomField("Posted_Date"); 
         } 
         while (aRS.next()); 
      } 
      catch (SFAException e) { 
         System.out.println(e.getMessage()); 
         return false; 
      } 
 
      return true; 
   } 
 
} 
 
 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 152

7.2.5 Analysis 
The analysis consists of three parts: 

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code to 
identify loitering object and over-allocation of objects.   

2. Garbage Collection: The garbage collector is a process that runs on a low priority thread.  When 
the JVM attempts to allocate an object but the Java heap is full, the JVM calls the garbage 
collector.  The garbage collector frees memory using some algorithm to remove unused objects.  
Examining the activities of the garbage collection will give a good indication of the performance 
impact of the garbage collector on the application. 

3. Code Efficiency: To identify any performance bottleneck due to inefficient code algorithms 

7.2.5.1 Memory (Heap) Usage 

The performance test utilized JProbe Profiler’s Memory Debugger to identify the parts of the framework 
that might be causing loitering objects.  This was accomplished by analysis of the Java heap.  The Runtime 
Heap Summary window can be used to view instance counts and information on allocating methods.  

The Heap Usage Chart below plots the size of the Java heap at a time interval of 1 second. The chart helps 
to visualize memory use in the Java heap. It displays the available size of the Java heap (the light gray line 
above 2000 KB) and the used memory (the dark lines with peaks) over time. 

The heap usage chart shows a series of spikes.  Steep spikes in the Heap Usage Chart represent temporary 
objects being allocated and garbage collected. If the levels of the troughs become higher over time, then 
not all the temporary objects are garbage collected.  As can be seen the troughs remain steady over time, 
and while multiple objects are being created and destroyed, there do not appear to be any lingering 
objects. 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 153

Runtime Heap Usage 

 

 

7.2.5.2 Garbage Collections 

The Garbage Monitor was used to identify the classes that are responsible for large allocations of short-
lived objects. It shows the cumulative results of successive garbage collections during the session. The 
Garbage Monitor shows only the top ten classes, representing the classes with the most instances garbage 
collected. During the session, the top ten classes will change as the number of garbage-collected objects 
accumulates.  The list below is the final top ten, displaying cumulative objects created at the end of 
program execution. 

Each row identifies the class by package name, if any, and class name. The next columns state, in order, 
the number of garbage collected objects (GC’ed column) for the class, the number of instances remaining 
in the heap (Alive column), and the method that allocated the instances of the class (AllocatedAt column).  
The same class can appear more than once because more than one method allocated instances of the class. 

The chart below does not show any unexpected activity, or activity that would indicate a performance 
problem.  Most of the objects created are strings, string buffers, or character arrays.  These numbers are in 
line with the framework requirements and expected behavior. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 154

Garbage Collection Statistics 

Package Class GC'ed Alive Allocated At 
  char[] 143,637 1,594 String.<init> 
java.lang String 138,833 1,566 BufferedReader.readLine 
java.lang String 135,890 1,630 Stringsubstring 
java.util StringTokenizer 134,195 1,555 AutonomyResultSet.parseResult 
java.lang  String  9,472 130 StringBuffer.toString 
  char[] 7,503 92 StringBuffer.<init> 
  char[] 7,281 49 String.<init> 
com.protomatter.syslog SyslogMessage 7,257 45 Syslog.log 
  Object[] 7,257 45 Syslog.log 
java.lang String 7,257 45 String.valueOf 
 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 155

7.2.5.3 Code Efficiency 

There are nine efficiency metrics that can be collected in JProbe — five basic metrics and four compound 
metrics. The basic metrics include Number of Calls, Method Time, Cumulative Time, Method Object 
Count, and Cumulative Object Count. The compound metrics are averages per number of calls, including 
Average Method Time, Average Cumulative Time, Average Method Object Count, and Average 
Cumulative Object Count. Time is measured as cpu time.  

The following list defines the nine performance metrics: 

• Number of Calls - The number of times the method was invoked. 
• Method Time - The amount of time spent executing the method, excluding time spent in its 

descendants. 
• Cumulative Time - The total amount of time spent executing the method, including time spent in its 

descendants but excluding time spent in recursive calls to descendants. 
• Method Object Count - The number of objects created during the method’s execution, excluding those 

created by its descendants. 
• Cumulative Object Count - The total number of objects created during the method’s execution, 

including those created by its descendants. 
• Average Method Time - Method Time divided by Number of Calls.  
• Average Cumulative Time - Cumulative Time divided by Number of Calls. 
• Average Method Object - Count Method Object Count divided by Number of Calls. 
 

The charts on the following pages serve to document the performance characteristics of the search 
framework with lists based on the above metrics:  

• Number of Calls 
• Cumulative Time 
• Method Time 
• Average Cumulative Time 
• Average Method Time 
 

These measures are basic indicators of processing resource utilization.  The lists can be reviewed for 
unexpected activity or optimization opportunities. (Note: all times are in milliseconds and all data object 
sizes are in kilobytes)



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 156

Methods with the most calls: 

Number of Calls 

Name Calls Cumulative Time Method Time 

Average 
Cumulative 
Time 

Average 
Method Time Method Objects 

Average 
Method 
Objects 

BufferedReader.readLine() 140,625 95,887.04 ( 40.0%) 95,887.04 ( 40.0%) 0.68 (  0.0%) 0.68 (  0.0%) 280,728 ( 42.5%) 1 (  0.0%) 

StringTokenizer.nextToken() 137,350 49,706.93 ( 20.7%) 49,706.93 ( 20.7%) 0.36 (  0.0%) 0.36 (  0.0%) 137,826 ( 20.9%) 1 (  0.0%) 

StringTokenizer.hasMoreTokens() 135,925 1,014.84 (  0.4%) 1,014.84 (  0.4%) 0.01 (  0.0%) 0.01 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

StringTokenizer.<init>(String, String) 135,775 2,743.07 (  1.1%) 2,743.07 (  1.1%) 0.02 (  0.0%) 0.02 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

String.equals(Object) 135,550 763.64 (  0.3%) 763.64 (  0.3%) 0.01 (  0.0%) 0.01 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

StringBuffer.append(String) 13,050 1,065.08 (  0.4%) 1,065.08 (  0.4%) 0.08 (  0.0%) 0.08 (  0.0%) 2,300 (  0.3%) 0 (  0.0%) 

StringBuffer.toString() 8,451 3,366.04 (  1.4%) 3,366.04 (  1.4%) 0.40 (  0.0%) 0.40 (  0.0%) 8,451 (  1.3%) 1 (  0.0%) 

Syslog.log(Object, Object, Object, 
Object, int) 

7,302 8,771.81 (  3.7%) 60.29 (  0.0%) 1.20 (  0.0%) 0.01 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

Syslog.log(InetAddress, Object, Object, 
Object, Object, int) 

7,302 8,711.52 (  3.6%) 8,711.52 (  3.6%) 1.19 (  0.0%) 1.19 (  0.0%) 29,284 (  4.4%) 4 (  0.0%) 

StringBuffer.<init>(String) 6,326 1,999.53 (  0.8%) 1,999.53 (  0.8%) 0.32 (  0.0%) 0.32 (  0.0%) 6,326 (  1.0%) 1 (  0.0%) 

StringBuffer.append(int) 4,225 4,923.47 (  2.1%) 4,923.47 (  2.1%) 1.17 (  0.0%) 1.17 (  0.0%) 12,925 (  2.0%) 3 (  0.0%) 

BUFFEREDREADER.<INIT>(READER) 
2,050 8,972.77 (  3.7%) 8,972.77 (  3.7%) 4.38 (  0.0%) 4.38 (  0.0%) 2,050 (  0.3%) 1 (  0.0%) 

BufferedReader.close() 2,025 30.14 (  0.0%) 30.14 (  0.0%) 0.01 (  0.0%) 0.01 (  0.0%) 0 (  0.0%) 0 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 157

Name Calls Cumulative Time Method Time 

Average 
Cumulative 
Time 

Average 
Method Time Method Objects 

Average 
Method 
Objects 

StringReader.<init>(String) 2,025 10.05 (  0.0%) 10.05 (  0.0%) 0.00 (  0.0%) 0.00 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

AutonomyResultSet.parseResult(String, 
int) 

2,000 218,190.00 ( 91.1%) 50,470.57 ( 21.1%) 109.09 (  0.0%) 25.24 (  0.0%) 143,758 ( 21.8%) 71 (  0.0%) 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 158

Methods with the most total time (includes time spent in sub-methods): 

Cumulative Time 

Name Calls Cumulative Time Method Time 
Average 
Cumulative Time 

Average 
Method Time Method Objects 

Average 
Method 
Objects 

AutonomyResultSet.parseResult(String, int) 2,000 218,190.00 ( 
91.1%) 

50,470.57 ( 21.1%) 109.09 (  0.0%) 25.24 (  0.0%) 143,758 ( 21.8%) 71 (  0.0%) 

BufferedReader.readLine() 140,625 95,887.04 ( 40.0%) 95,887.04 ( 40.0%) 0.68 (  0.0%) 0.68 (  0.0%) 280,728 ( 42.5%) 1 (  0.0%) 

StringTokenizer.nextToken() 137,350 49,706.93 ( 20.7%) 49,706.93 ( 20.7%) 0.36 (  0.0%) 0.36 (  0.0%) 137,826 ( 20.9%) 1 (  0.0%) 

AutonomyResultSet.getCustomField(String) 250 47,285.38 ( 19.7%) 100.48 (  0.0%) 189.14 (  0.1%) 0.40 (  0.0%) 254 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getQuickSummary() 250 28,686.73 ( 12.0%) 70.34 (  0.0%) 114.75 (  0.0%) 0.28 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getSummary() 250 25,913.52 ( 10.8%) 80.38 (  0.0%) 103.65 (  0.0%) 0.32 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getDatabaseNum() 250 25,672.37 ( 10.7%) 10.05 (  0.0%) 102.69 (  0.0%) 0.04 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getWeight() 250 25,240.31 ( 10.5%) 0.00 (  0.0%) 100.96 (  0.0%) 0.00 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getID() 250 24,567.10 ( 10.3%) 60.29 (  0.0%) 98.27 (  0.0%) 0.24 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getTitle() 250 23,662.79 (  9.9%) 160.77 (  0.1%) 94.65 (  0.0%) 0.64 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getURL() 250 23,431.69 (  9.8%) 30.14 (  0.0%) 93.73 (  0.0%) 0.12 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

BufferedReader.<init>(Reader) 2,050 8,972.77 (  3.7%) 8,972.77 (  3.7%) 4.38 (  0.0%) 4.38 (  0.0%) 2,050 (  0.3%) 1 (  0.0%) 

Syslog.log(Object, Object, Object, Object, 
int) 

7,302 8,771.81 (  3.7%) 60.29 (  0.0%) 1.20 (  0.0%) 0.01 (  0.0%) 0 (  0.0%) 0 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 159

Name Calls Cumulative Time Method Time 
Average 
Cumulative Time 

Average 
Method Time Method Objects 

Average 
Method 
Objects 

Syslog.log(InetAddress, Object, Object, 
Object, Object, int) 

7,302 8,711.52 (  3.6%) 8,711.52 (  3.6%) 1.19 (  0.0%) 1.19 (  0.0%) 29,284 (  4.4%) 4 (  0.0%) 

AutonomyStatement.executeQuery() 25 5,275.14 (  2.2%) 0.00 (  0.0%) 211.01 (  0.1%) 0.00 (  0.0%) 35 (  0.0%) 1 (  0.0%) 

 

Methods with the most time spent only in that method (not including sub-methods): 

Method Time 

Name Calls Cumulative Time Method Time 

Average 
Cumulative 
Time 

Average 
Method Time Method Objects 

Average 
Method Objects 

BufferedReader.readLine() 140,625 95,887.04 ( 40.0%) 95,887.04 ( 40.0%) 0.68 (  0.0%) 0.68 (  0.0%) 280,728 ( 42.5%) 1 (  0.0%) 

AutonomyResultSet.parseResult(String, int) 2,000 218,190.00 ( 
91.1%) 

50,470.57 ( 21.1%) 109.09 (  
0.0%) 

25.24 (  0.0%) 143,758 ( 21.8%) 71 (  0.0%) 

StringTokenizer.nextToken() 137,350 49,706.93 ( 20.7%) 49,706.93 ( 20.7%) 0.36 (  0.0%) 0.36 (  0.0%) 137,826 ( 20.9%) 1 (  0.0%) 

BufferedReader.<init>(Reader) 2,050 8,972.77 (  3.7%) 8,972.77 (  3.7%) 4.38 (  0.0%) 4.38 (  0.0%) 2,050 (  0.3%) 1 (  0.0%) 

Syslog.log(InetAddress, Object, Object, Object, 
Object, int) 

7,302 8,711.52 (  3.6%) 8,711.52 (  3.6%) 1.19 (  0.0%) 1.19 (  0.0%) 29,284 (  4.4%) 4 (  0.0%) 

StringBuffer.append(int) 4,225 4,923.47 (  2.1%) 4,923.47 (  2.1%) 1.17 (  0.0%) 1.17 (  0.0%) 12,925 (  2.0%) 3 (  0.0%) 

Syslog.configure(File) 1 3,506.71 (  1.5%) 3,506.71 (  1.5%) 3,506.71 (  
1.5%) 

3,506.71 (  
1.5%) 

12,655 (  1.9%) 12,655 (  1.9%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 160

Name Calls Cumulative Time Method Time 

Average 
Cumulative 
Time 

Average 
Method Time Method Objects 

Average 
Method Objects 

StringBuffer.toString() 8,451 3,366.04 (  1.4%) 3,366.04 (  1.4%) 0.40 (  0.0%) 0.40 (  0.0%) 8,451 (  1.3%) 1 (  0.0%) 

StringTokenizer.<init>(String, String) 135,775 2,743.07 (  1.1%) 2,743.07 (  1.1%) 0.02 (  0.0%) 0.02 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

StringBuffer.<init>(String) 6,326 1,999.53 (  0.8%) 1,999.53 (  0.8%) 0.32 (  0.0%) 0.32 (  0.0%) 6,326 (  1.0%) 1 (  0.0%) 

HttpURLConnection.getInputStream() 50 1,778.48 (  0.7%) 1,778.48 (  0.7%) 35.57 (  0.0%) 35.57 (  0.0%) 4,328 (  0.7%) 86 (  0.0%) 

HttpURLConnection.connect() 50 1,356.47 (  0.6%) 1,356.47 (  0.6%) 27.13 (  0.0%) 27.13 (  0.0%) 2,681 (  0.4%) 53 (  0.0%) 

StringBuffer.append(String) 13,050 1,065.08 (  0.4%) 1,065.08 (  0.4%) 0.08 (  0.0%) 0.08 (  0.0%) 2,300 (  0.3%) 0 (  0.0%) 

StringTokenizer.hasMoreTokens() 135,925 1,014.84 (  0.4%) 1,014.84 (  0.4%) 0.01 (  0.0%) 0.01 (  0.0%) 0 (  0.0%) 0 (  0.0%) 

BufferedReader.readLine() 140,625 95,887.04 ( 40.0%) 95,887.04 ( 40.0%) 0.68 (  0.0%) 0.68 (  0.0%) 280,728 ( 42.5%) 1 (  0.0%) 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 161

Average Cumulative Time (includes time spent in sub-methods): 

Average Cumulative Time 

Name Calls Cumulative Time Method Time 

Average 
Cumulative 
Time 

Average 
Method Time Method Objects 

Average 
Method Objects 

Syslog.addLogging() 1 3,536.86 (  1.5%) 0.00 (  0.0%) 3,536.86 (  1.5%) 0.00 (  0.0%) 16 (  0.0%) 16 (  0.0%) 

Syslog.configure(File) 1 3,506.71 (  1.5%) 3,506.71 (  1.5%) 3,506.71 (  1.5%) 3,506.71 (  
1.5%) 

12,655 (  1.9%) 12,655 (  1.9%) 

Syslog.<clinit>() 1 954.55 (  0.4%) 20.10 (  0.0%) 954.55 (  0.4%) 20.10 (  0.0%) 30 (  0.0%) 30 (  0.0%) 

Syslog.<clinit>() 1 854.07 (  0.4%) 854.07 (  0.4%) 854.07 (  0.4%) 854.07 (  
0.4%) 

6,570 (  1.0%) 6,570 (  1.0%) 

AutonomyStatement.executeQuery() 25 5,275.14 (  2.2%) 0.00 (  0.0%) 211.01 (  0.1%) 0.00 (  0.0%) 35 (  0.0%) 1 (  0.0%) 

AutonomyStatement.execute(String) 25 5,054.09 (  2.1%) 10.05 (  0.0%) 202.16 (  0.1%) 0.40 (  0.0%) 137 (  0.0%) 5 (  0.0%) 

AutonomyResultSet.getCustomField(String) 250 47,285.38 ( 19.7%) 100.48 (  0.0%) 189.14 (  0.1%) 0.40 (  0.0%) 254 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getQuickSummary() 250 28,686.73 ( 12.0%) 70.34 (  0.0%) 114.75 (  0.0%) 0.28 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyStatement.popResults(InputStream) 25 2,733.03 (  1.1%) 30.14 (  0.0%) 109.32 (  0.0%) 1.21 (  0.0%) 79 (  0.0%) 3 (  0.0%) 

AutonomyResultSet.parseResult(String, int) 2,000 218,190.00 ( 
91.1%) 

50,470.57 ( 
21.1%) 

109.09 (  0.0%) 25.24 (  0.0%) 143,758 ( 21.8%) 71 (  0.0%) 

AutonomyResultSet.getSummary() 250 25,913.52 ( 10.8%) 80.38 (  0.0%) 103.65 (  0.0%) 0.32 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getDatabaseNum() 250 25,672.37 ( 10.7%) 10.05 (  0.0%) 102.69 (  0.0%) 0.04 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyConnection.<init>() 25 2,562.21 (  1.1%) 0.00 (  0.0%) 102.49 (  0.0%) 0.00 (  0.0%) 2 (  0.0%) 0 (  0.0%) 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 162

Name Calls Cumulative Time Method Time 

Average 
Cumulative 
Time 

Average 
Method Time Method Objects 

Average 
Method Objects 

AutonomyResultSet.getWeight() 250 25,240.31 ( 10.5%) 0.00 (  0.0%) 100.96 (  0.0%) 0.00 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getID() 250 24,567.10 ( 10.3%) 60.29 (  0.0%) 98.27 (  0.0%) 0.24 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getTitle() 250 23,662.79 (  9.9%) 160.77 (  0.1%) 94.65 (  0.0%) 0.64 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyResultSet.getURL() 250 23,431.69 (  9.8%) 30.14 (  0.0%) 93.73 (  0.0%) 0.12 (  0.0%) 252 (  0.0%) 1 (  0.0%) 

AutonomyConnection.isServerStatusOK() 25 1,688.05 (  0.7%) 0.00 (  0.0%) 67.52 (  0.0%) 0.00 (  0.0%) 58 (  0.0%) 2 (  0.0%) 

HttpURLConnection.getInputStream() 50 1,778.48 (  0.7%) 1,778.48 (  0.7%) 35.57 (  0.0%) 35.57 (  0.0%) 4,328 (  0.7%) 86 (  0.0%) 

AutonomyConnection.getProperties() 25 864.12 (  0.4%) 30.14 (  0.0%) 34.56 (  0.0%) 1.21 (  0.0%) 170 (  0.0%) 6 (  0.0%) 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

             ITA Release 2.0 
                          RCS Build & Test Report 

 

 

 163

Average time spent only in a method (not including sub-methods): 

Average Method Time 

Name Calls Cumulative Time Method Time 

Average 
Cumulative 
Time 

Average 
Method Time Method Objects 

Average 
Method Objects 

Syslog.configure(File) 1 3,506.71 (  1.5%) 3,506.71 (  1.5%) 3,506.71 (  1.5%) 3,506.71 (  
1.5%) 

12,655 (  1.9%) 12,655 (  1.9%) 

Syslog.<clinit>() 1 854.07 (  0.4%) 854.07 (  0.4%) 854.07 (  0.4%) 854.07 (  
0.4%) 

6,570 (  1.0%) 6,570 (  1.0%) 

HttpURLConnection.getInputStream() 50 1,778.48 (  0.7%) 1,778.48 (  0.7%) 35.57 (  0.0%) 35.57 (  0.0%) 4,328 (  0.7%) 86 (  0.0%) 

HttpURLConnection.connect() 50 1,356.47 (  0.6%) 1,356.47 (  0.6%) 27.13 (  0.0%) 27.13 (  0.0%) 2,681 (  0.4%) 53 (  0.0%) 

AutonomyResultSet.parseResult(String, int) 2,000 218,190.00 ( 
91.1%) 

50,470.57 ( 
21.1%) 

109.09 (  0.0%) 25.24 (  0.0%) 143,758 ( 21.8%) 71 (  0.0%) 

Syslog.<clinit>() 1 954.55 (  0.4%) 20.10 (  0.0%) 954.55 (  0.4%) 20.10 (  0.0%) 30 (  0.0%) 30 (  0.0%) 

Properties.load(InputStream) 25 432.06 (  0.2%) 432.06 (  0.2%) 17.28 (  0.0%) 17.28 (  0.0%) 1,125 (  0.2%) 45 (  0.0%) 

ClassLoader.loadClassInternal(String) 26 190.91 (  0.1%) 190.91 (  0.1%) 7.34 (  0.0%) 7.34 (  0.0%) 702 (  0.1%) 27 (  0.0%) 

BufferedReader.<init>(Reader) 2,050 8,972.77 (  3.7%) 8,972.77 (  3.7%) 4.38 (  0.0%) 4.38 (  0.0%) 2,050 (  0.3%) 1 (  0.0%) 

AutonomyStatement.parseText(int, String, boolean) 50 221.05 (  0.1%) 130.62 (  0.1%) 4.42 (  0.0%) 2.61 (  0.0%) 100 (  0.0%) 2 (  0.0%) 

 

 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

164

7.3 User Guide 

7.3.1 Introduction 
7.3.1.1 Purpose 

This user guide is meant to be a resource for the installation, configuration, and usage of the Reusable 
Common Services (RCS) Search Framework and its complementary JSP Search Tag Library (Taglib).  The 
RCS Search Framework may be used independently from the Taglib, yet the Taglib implements and 
requires the underlying Search Framework.  

7.3.1.2 Intended audience 

People who will benefit the most from this section are ITA and SFA application developers who need to 
use the RCS Search Framework in their applications. Developers who need to use the JSP Search Taglib 
also will find this section useful.  

7.3.1.3 Background 

This Search framework is part of a suite of frameworks called Reusable Common Services 
(RCS) provided to SFA applications by the ITA initiative.  The goal of the ITA initiative is to 
promote code reuse, standardization, and application of best practices across all SFA system 
development projects.  The Search framework simplifies, standardizes, and improves the use of 
the Autonomy search engine. The JSP Search Tag Library (Taglib) contains tags that integrate 
with the RCS search framework and provide basic logic and JSP/HTML functionality.  Tag 
libraries are composed of a set of custom tags. These custom tags help separate presentation 
from business logic. What this means is that web designers can change the layout without 
worrying about modifying the underlying logic. Custom tags also help developers avoid 
embedding scripting code within the JSP page as well as encourage reuse and ease 
maintainability. 

7.3.1.4 Scope 

This section covers the installation, configuration and usage of the RCS Search Framework and the RCS 
Search JSP Taglib.  Detailed information about their design may be found in the RCS Search Design 
document and the RCS Search JSP Taglib Reference. 

7.3.1.5 Assumptions 

We assume the following environment:  

• J2EE application server: WebSphere application server 
• JSP 1.1 Processor configured (See Appendix B of the RCS Search JSP Taglib Reference) 
• Java Servlet 2.2 
• Reader is familiar with, if not proficient in, JSP development 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

165

7.3.2 Description 
 

7.3.2.1 Overview 

The search framework simplifies, standardizes, and improves the use of the Autonomy search engine.  
This framework complies with J2EE standards instead of using CGI as in the current search engine 
interface.  The framework consists of classes that provide a common way to access the Autonomy HTTP 
API and utilize its features. 

The search framework implements the following Autonomy features: 

• Query search engine (including querying a custom field) 
• Natural Language or "Fuzzy" query search engine (including querying a custom field) 
• Display search results (including sorting by a custom field) 
• Suggest additional search results 

 
The RCS Search JSP Tag Library, or Search Taglib, defines a set of custom tags for use in Java Server 
Pages (JSPs), which provide a number of benefits.  Amongst the benefits of using the custom tags are the 
following:  

• Developer friendly interface to RCS Search core components 
• Java code is removed from JSPs  
• Common tasks can be delegated to the taglib 

 
The primary responsibilities of the Tag Library are to: 

• Provide the custom tags for use in JSPs 
• Map the tags to their corresponding tag classes 
• Give usage guidelines, including required and optional attributes. 

 
These custom tags are not just bean tags. Custom tags can modify the content within the tag body and 
have access to the application context. Some of the ways they can be used include dynamically generating 
page content and implementing flow of control. They can interact with each other including being nested. 

7.3.2.2 RCS Search Framework Features 

The Search framework consists of three classes listed below: 

• AutonomyConnection 
• AutonomyStatement 
• AutonomyRestultSet 

 

These classes wrap the underlying HTTP API commands provided by the Autonomy Search Engine 
server.  The AutonomyConnection class represents the Autonomy Search Engine Server connection 
information.  The AutonomyStatement class represents statements sent to the Autonomy Search Engine 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

166

server.  The AutonomyResultSet class represents results returned from the Autonomy Search Engine 
server.   

For exception handling and logging in this search framework, the ITA R2.0 Exception and Logging 
frameworks will be used.  These powerful frameworks will ensure that sufficient exception handling and 
logging are included with this search framework. 

Below is a diagram that illustrates the interaction between any J2EE component (JSP, Servlet, EJB, 
JavaBean), the Search framework, and the Autonomy Search Engine server. 

7.3.2.3 RCS Search JSP Taglib Features 

The Search JSP Taglib provides tags for the following Search Components, outlined in the RCS 
Search Framework Design Document, and described above: 

• Connection : Defines an AutonomyConnection object 
• Statement : Defines an AutonomyStatement object with Connection parameters 
• ResultSet : Executes Statement to create an AutonomyResultSet object 

 
Instructions on how to use these tags are in the RCS Search JSP Taglib Reference document. 
7.3.2.4 Main Concepts 

The Search framework allows the programmer to execute searches against the Autonomy server through 
simple API.  Instead of learning Autonomy’s HTTP-based API, the developer can easily use the methods 
available through the RCS Search framework.  A Search JSP Taglib is provided to aid the developer even 

 

WebSphere Application Server 

Autonomy Search 
Engine Server 

J2EE 
Component 

Autonomy 
Search 
Framework 

Autonomy 
HTTP API 

DRE 

Response 

Request 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

167

more.  With this powerful set of JSP 1.1-based tags the programmer can rapidly develop JSP pages to 
query the Autonomy server.  

7.3.3 Installation  
7.3.3.1 Software requirements 

The RCS Search framework is J2EE compliant. The framework requires JDK 1.2 (recommended) and also 
works with JDK 1.3.  

The following is a useful installation table of requirements. Use this to make sure you have all of the 
required files and applications in your environment. 

Operating System The ITA Team has tested the search framework in the following operating 
systems: Solaris 2.6, Windows NT/2000 

Application Server 
Environment 

The ITA Team has tested the search framework within WebSphere 
Application Server 3.5.  There is nothing in the search package that ties the 
framework to a particular application server (in addition, minimal testing 
has been completed on the Jakarta-Apache base).  Also, a JSP 1.1 Processor 
is required for using the RCS Search Taglib. 

ITA Search Package 
(rcs_search-v1.1.jar) 

jakarta-oro-2.0.1.jar 
jdom-B6.jar 
protomatter-1_1_5.jar  
rcs_exception-v1.5.jar 
rcs_logging-v1.5.jar 
utility.jar 
xerces.jar 
xml.jar 

ITA Search Taglib Package 
(rcs_search-taglibs-v1.1.jar) 

search.tld – RCS Search Tag Library Descriptor file 
rcs_search-v1.1.jar (required for use with rcs_search-taglibs-v1.1.jar) 
javax.servlet.jsp.* (especially javax.servlet.jsp.tagext.*) 

Properties Files autonomy.properties  
errorMessages.properties 

 

7.3.3.2 Installation procedures 

Because the RCS Search framework is independent from the Search JSP tag library, this documentation 
will proceed with the base installation/configuration for the RCS Search framework followed by 
additional configuration steps necessary to install/configure the Search JSP Taglib. 

7.3.3.2.1 RCS Search Framework 

Place the above .jar files in a directory not accessible from the web on your web/application server. This 
directory/path will eventually (if not already) be listed in the application server’s classpath.  

The search framework binaries are located in rcs_search-v1.1.jar. 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

168

7.3.3.2.2 RCS Search JSP Taglib 

Follow the guidelines and procedures outlined in the RCS Search JSP Taglib Reference document for 
setting up the tag library.  The properties files need to be located in the root directory.   

The search tag library binaries are located in rcs_search-taglibs-v1.1.jar. 

7.3.4 Configuration 
7.3.4.1 Add the Jar files on the classpath 

The search package needs to be added in the WebSphere classpath.  The following steps show how to add 
the classpath on WebSphere: 

• Bring up the WebSphere admin console and select your application server on the console 
• Stop your application server 
• Click on the ‘General’ Tab and add the following line in the Command Line Arguments - 

classpath /www/dev/rcs/jars/  (example for development environment) 
• Restart your application server. 

7.3.4.2 Add the StartupRcs.jar on the classpath 

Because the Logging framework is used by the Search framework, it is required to set up the Logging 
framework correctly by following the steps in this section. 

Due to the fact that multiple applications can use the same ITA Reusable Common Services (RCS), it is 
beneficial to configure and launch a startup class that configures and starts any ITA RCS Services within 
an Application Server.  This is accomplished by using WebSphere’s ServiceInitializer interface. By 
specifying the name of the Startup Class as part of the ServiceInitializer command line argument for the 
Application Server, WebSphere will run the class as the last action it does in an Application Server startup 
or shutdown. An example is:  

• Dcom.ibm.ejs.sm.server.ServiceInitializer=<class>[,<class>]... 
 
… where each <class> is one of the startup classes. 

  An example at SFA of this is the ITA Logging service. The logging service actually configures itself to the 
parameters specified within an XML configuration file (rcs.xml). The ITA RCS Startup class reads the 
XML file and configures the service upon startup of the Application Server.  The StartupRcs class code 
can be found on the ‘Sample code’ section of this document.   

To enable the RCS startup class the following steps need to be taken. 

3. The StartupRcs.jar file needs to be placed within the classpath of the Application Server: 
• Bring the WebSphere Admin console up and select your application server.  
• Stop your application server. 
• Click on the ‘General’ Tab and add the path where StartupRcs.jar is located in the Command Line 

Arguments.  
• Restart your application server 

 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

169

4. Add the following line in the Command Line Argument  

• Dcom.ibm.ejs.sm.server.ServiceInitializer=gov.ed.sfa.ita.common.StartupRcs 
 
7.3.4.3 XML configuration file 

The Search framework implements the RCS Logging framework, which is configured by the XML 
configuration file. Please refer to the ITA RCS Logging User Guide for more instructions on setting up the 
XML configuration file.  

7.3.5 Usage Scenarios with Sample Code 
Three examples are provided to illustrate the use of the Search framework and the Search JSP Taglib.  
First, a simple class example is used to illustrate basic usage. The second example (section 5.2) shows a 
Servlet processor.  The third example (section 5.3) is a simple JSP form using the custom search tag 
library.  The ITA team recommends using the RCS Search JSP Taglib because it’s easy to use and allows 
for rapid development. 

7.3.5.1 Search Framework with Simple Class 

package gov.ed.sfa.ita.samples; 
 
import gov.ed.sfa.ita.exception.*; 
import gov.ed.sfa.ita.search.*; 
 
public class AutonomyTest { 
 /** 
  * AutonomyTest constructor comment. 
  */ 
 public AutonomyTest() { 
  super(); 
 } 
 
 public static void main(String[] args) { 
  try { 
   AutonomyConnection aCon = new AutonomyConnection(); 
 
   AutonomyStatement aStmt = aCon.createStatement(); 
   aStmt.setQueryText("IFAP"); 
   //aStmt.setMaxNumResults(10); 
   aStmt.setDatabaseNums("34"); 
   aStmt.setQueryTextCustomField("07/19/2001", "Posted_Date"); 
 
   //AutonomyResultSet aRS = aStmt.executeQuery(); 
   //AutonomyResultSet aRS = aStmt.executeFuzzyQuery(); 
 
   aStmt.setID("120626"); 
   AutonomyResultSet aRS = aStmt.executeSuggest(); 
 
   System.out.println("Total Results=" + aRS.getNumResults()); 
   do { 
    System.out.println("Result " + aRS.getRow() + " of " + 
aRS.getNumResults()); 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

170

    System.out.println("----------------------------------
----------------"); 
    System.out.println("Title::" + aRS.getTitle()); 
    System.out.println("Summary::" + aRS.getSummary()); 
    System.out.println("QuickSummary::" + 
aRS.getQuickSummary()); 
    System.out.println("URL::" + aRS.getURL()); 
    System.out.println("Weight::" + aRS.getWeight()); 
    System.out.println("ID::" + aRS.getID()); 
    System.out.println("DB Num::" + aRS.getDatabaseNum()); 
    System.out.println("Posted_Date::" + 
aRS.getCustomField("Posted_Date")); 
    System.out.println(); 
 
   } while (aRS.next()); 
 
  } catch (SFAException e) { 
   System.out.println(e.getMessage()); 
  } 
 } 
} 

7.3.5.2 Search Framework with Servlet 

SearchProcessor.java 

package gov.ed.sfa.ita.samples; 
 
import gov.ed.sfa.ita.search.*; 
import gov.ed.sfa.ita.exception.*; 
import java.io.*; 
 
public class SearchProcessor extends javax.servlet.http.HttpServlet { 
 
 public void destroy() { 
 } 
 
 /** 
  * Process incoming HTTP GET requests  
  * 
  * @param request Object that encapsulates the request to the servlet  
  * @param response Object that encapsulates the response from the 
servlet 
  */ 
 public void doGet( 
  javax.servlet.http.HttpServletRequest request,  
  javax.servlet.http.HttpServletResponse response) 
  throws javax.servlet.ServletException, java.io.IOException { 
 
  performTask(request, response); 
 
 } 
 /** 
  * Process incoming HTTP POST requests  
  *  
  * @param request Object that encapsulates the request to the servlet  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

171

  * @param response Object that encapsulates the response from the 
servlet 
  */ 
 public void doPost( 
  javax.servlet.http.HttpServletRequest request,  
  javax.servlet.http.HttpServletResponse response) 
  throws javax.servlet.ServletException, java.io.IOException { 
 
  performTask(request, response); 
 
 } 
 /** 
  * Returns the servlet info string. 
  */ 
 public String getServletInfo() { 
 
  return super.getServletInfo(); 
 
 } 
 /** 
  * Initializes the servlet. 
  */ 
 public void init() { 
 } 
 /** 
  * Process incoming requests for information 
  *  
  * @param request Object that encapsulates the request to the servlet  
  * @param response Object that encapsulates the response from the 
servlet 
  */ 
 public void performTask( 
  javax.servlet.http.HttpServletRequest request,  
  javax.servlet.http.HttpServletResponse response) 
  throws java.io.IOException { 
 
  PrintWriter out = null; 
  AutonomyConnection aCon = null; 
  AutonomyStatement aStmt = null; 
  AutonomyResultSet aRS = null; 
 
  try { 
 
   aCon = new AutonomyConnection(); 
 
   aStmt = aCon.createStatement(); 
   String max = request.getParameter("MaxNumResults"); 
   if (max != null && !max.equals("")) { 
    aStmt.setMaxNumResults(Integer.parseInt(max)); 
   } 
   String min = request.getParameter("MinThreshhold"); 
   if (min != null && !min.equals("")) { 
    aStmt.setMinThreshold(Integer.parseInt(min)); 
   } 
 
  
 aStmt.setDatabaseNames(request.getParameter("DatabaseNames")); 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

172

   aStmt.setDatabaseNums(request.getParameter("DatabaseNums")); 
   aStmt.setID(request.getParameter("DocID")); 
 
   String searchtype = request.getParameter("SearchType"); 
   if (searchtype.equals("regular")) { 
    //do nothing this is the regular search type 
   } else 
    if (searchtype.equals("booleanand")) { 
     aStmt.setQueryAllWords(); 
    } else 
     if (searchtype.equals("booleanand")) { 
      aStmt.setQueryAnyWords(); 
     } 
 
   aStmt.setQueryText(request.getParameter("QueryText")); 
   aStmt.setQueryTextCustomField( 
    request.getParameter("CustomQueryText1"),  
    request.getParameter("CustomQueryFieldName1"));  
   aStmt.setQueryTextCustomField( 
    request.getParameter("CustomQueryText2"),  
    request.getParameter("CustomQueryFieldName2"));  
  
 aStmt.addCustomQueryStmt(request.getParameter("CustomQueryStmt")); 
 
   String actiontype = request.getParameter("ActionType"); 
   if (actiontype.equals("query")) { 
    aRS = aStmt.executeQuery(); 
   } else 
    if (actiontype.equals("fuzzyquery")) { 
     aRS = aStmt.executeFuzzyQuery(); 
    } else 
     if (actiontype.equals("suggest")) { 
      aRS = aStmt.executeSuggest(); 
     } 
 
   response.setContentType("text/html"); 
   out = new PrintWriter(response.getOutputStream()); 
   out.println("<HTML><BODY>"); 
 
   out.println("<B>Total Results=</B>" + aRS.getNumResults()); 
   out.println("<BR>"); 
   do { 
    out.println("<B>Result</B> " + aRS.getRow() + " of " + 
aRS.getNumResults()); 
    out.println("<BR>"); 
    out.println("<B>--------------------------------------
------------</B>"); 
    out.println("<BR>"); 
    out.println("<I>Title::</I>" + aRS.getTitle()); 
    out.println("<BR>"); 
    out.println("<I>Summary::</I>" + aRS.getSummary()); 
    out.println("<BR>"); 
    out.println("<I>QuickSummary::</I>" + 
aRS.getQuickSummary()); 
    out.println("<BR>"); 
    out.println("<I>URL::</I>" + aRS.getURL()); 
    out.println("<BR>"); 



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

173

    out.println("<I>Weight::</I>" + aRS.getWeight()); 
    out.println("<BR>"); 
    out.println("<I>ID::</I>" + aRS.getID()); 
    out.println("<BR>"); 
    out.println("<I>DB Num::</I>" + aRS.getDatabaseNum()); 
    out.println("<BR>"); 
    out.println("<I>Posted_Date::</I>" + 
aRS.getCustomField("Posted_Date")); 
    out.println("<BR>"); 
    out.println("<BR>"); 
   } while (aRS.next()); 
   out.println("</BODY></HTML>"); 
   out.close(); 
  } catch (SFAException e) { 
   if (out == null) { 
    out = new PrintWriter(response.getOutputStream()); 
    out.println("<HTML><BODY>"); 
   } 
   out.println("<B>ERROR</B>"); 
   out.println("<BR><I>"); 
   out.println(e.getMessage()); 
   out.println("</I>"); 
   out.println("</BODY></HTML>"); 
   out.close(); 
   System.out.println(e.getMessage()); 
  } catch (Exception e) { 
   if (out == null) { 
    out = new PrintWriter(response.getOutputStream()); 
    out.println("<HTML><BODY>"); 
   } 
   out.println(e.getMessage()); 
   out.close(); 
   System.out.println(e.getMessage()); 
  } 
 } 
} 
7.3.5.3 Search JSP Taglib with JSP 

<%@ page language="java" %> 
<%@ taglib uri="/search-taglib" prefix="search"%> 
<html> 
<head> 
<title>Search Results Example</title> 
</head> 
<!--This is an example of how to use the RCS Search custom JSP Tag Libraries -
-> 
 
<body> 
 
<!-- This sets up the connection to the Autonomy Server--> 
<search:connection id="conn1"/> 
 
<!--  
// This builds the query statement  
// Here, if this were a form processor, we would get the 
// posted form variables.  



 US Department of Education 
Student Financial Assistance 
SFA Modernization Partner 

ITA Release 2.0 
ITA Reusable Common Services 

Build&Test Report 
 

 

 

 

174

--> 
<search:statement id="stmt1" conn="conn1"> 
   <search:query queryText="Illinois" maxNumResults="40" 
dbNames="eannouncements"> 
       <search:customquery queryText="07/19/2001" fieldName="Posted_Date"/> 
   </search:query> 
</search:statement> 
 
<!-- Start building the results and the table display --> 
<search:resultset stmt="stmt1" shouldLoop="false" > 
   <B><search:getTotalNumResults/> result(s) for query 
'<search:getQueryText/>'<B> 
</search:resultset> 
 
<table border=1> 
<search:resultset stmt="stmt1" shouldLoop="true" startRow="1" endRow="max" > 
<tr> 
   <td>Result <search:getResultNum/> of <search:getTotalNumResults/></td></tr> 
<tr> 
   <td><B>Title</B></td> <td><A 
HREF="<search:getURL/>"><search:getTitle/></A></td> </tr> 
<tr> 
   <td><B>Summary</B></td> <td><search:getSummary/></td> </tr> 
<tr> 
   <td><B>Quick Summary</B></td> <td><search:getQuickSummary/></td> </tr> 
<tr> 
   <td><B>Weight</B></td> <td><search:getWeight/></td> </tr> 
<tr> 
   <td><B>ID</B></td> <td><search:getID/></td> </tr> 
<tr> 
   <td><B>DB Num</B></td> <td><search:getDBNum/></td> </tr> 
<tr> 
   <td><B>Custom Field</B></td> <td><search:getCustomField 
fieldName="Posted_Date"/></td> </tr> 
</search:resultset> 
</table> 
 
</body> 
</html> 

7.3.6 Resources 
The following resources have more information about Autonomy, the Search framework and JSP tag 
libraries : 

• RCS Search Design document 

• RCS Search JSP Taglib Reference document  

• http://jakarta.apache.org/taglibs/tutorial.htm 


